

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

April 2004 Revised June 2004

FAIRCHILD

SEMICONDUCTOR

FXL4T245 Low Voltage Dual Supply 4-Bit Signal Translator with Configurable Voltage Supplies and Signal Levels and 3-STATE Outputs

General Description

The FXL4T245 is a configurable dual-voltage-supply translator designed for bi-directional voltage translation of signals between two voltage levels. The device allows translation between voltages as high as 3.6V to as low as 1.1V. The A Port tracks the V_{CCA} level, and the B Port tracks the V_{CCB} level. Both ports are designed to accept supply voltage levels from 1.1V to 3.6V. This allows for bi-directional voltage translation over a variety of voltage level es: 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.

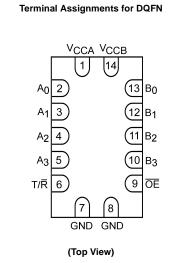
The device remains in 3-STATE until both V_{CC}s reach active levels allowing either V_{CC} to be powered-up first. The device also contains power down control circuits that place the device in 3-STATE if either V_{CC} is removed.

The Transmit/Receive (T/ \overline{R}) input determines the direction of data flow through the device. The \overline{OE} input, when HIGH, disables both the A and B Ports by placing them in 3-STATE condition. The FXL4T245 is designed so that the control pins (T/ \overline{R} and \overline{OE}) are supplied by V_{CCA}.

Features

- Bi-directional interface between any 2 levels from 1.1V to 3.6V
- \blacksquare Fully configurable, inputs track V_{CC} level
- Non-preferential power-up sequencing; either V_{CC} may be powered-up first
- No power-up sequencing required
- \blacksquare Outputs remain in 3-STATE until active V_{CC} level is reached
- \blacksquare Outputs switch to 3-STATE if either V_{CC} is at GND
- Power-off protection
- Control inputs (T/R, OE) levels are referenced to V_{CCA} voltage
- Packaged in 14-terminal DQFN (2.5mm x 3.0mm) package
- ESD protection exceeds:
 - 4kV HBM ESD
- (per JESD22-A114 & Mil Std 883e 3015.7) • 8kV HBM I/O to GND ESD
- (per JESD22-A114 & Mil Std 883e 3015.7)
- 1kV CDM ESD (per ESD STM 5.3)
- 200V MM ESD (per JESD22-A115 & ESD STM5.2)

Ordering Code:


Order Number	Package Number	Package Description
XL4T245BQX	MLP014A	14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241 2.5 x 3.0mm

© 2004 Fairchild Semiconductor Corporation DS500891

FXL4T245

Terminal	Descriptions
Terminal Names	Description
OE	Output Enable Input
T/R	Transmit/Receive Input
A _n	Side A Inputs or 3-STATE Outputs
B _n	Side B Inputs or 3-STATE Outputs
V _{CCA}	Side A Power Supply
V _{CCB}	Side B Power Supply
GND	Ground

Connection Diagram

Truth Table

Inp	uts	Outputs
OE	T/R	
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

Terminal Assignment

Terminal Number	Terminal Name
1	V _{CCA}
2	A ₀
3	A ₁ A ₂ A ₃
4	A ₂
5	A ₃
6	T/R
7	GND
8	GND
9	OE
10	B ₃
11	B ₂
12	B ₁
13	B ₀
14	V _{CCB}

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 volts, outputs are in a HIGH-Impedance state. The control inputs (T/ \overline{R} and \overline{OE}) are designed to track the V_{CCA} supply. A pull-up resistor tying \overline{OE} to V_{CCA} should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-up resistor tor is based upon the current-sinking capability of the OE driver.

The recommended power-up sequence is the following:

- 1. Apply power to either V_{CC} .
- 2. Apply power to the T/\overline{R} input (Logic HIGH for A-to-B operation; Logic LOW for B-to-A operation) and to the respective data inputs (A Port or B Port). This may occur at the same time as Step 1.
- 3. Apply power to other V_{CC} .
- 4. Drive the \overline{OE} input LOW to enable the device.
- The recommended power-down sequence is the following:
- 1. Drive $\overline{\text{OE}}$ input HIGH to disable the device.
- 2. Remove power from either $\rm V_{\rm CC}.$
- 3. Remove power from other $V_{\mbox{CC}}.$

Absolute Maximum Ra	atings(Note 1)	Recommended Operating	
Supply Voltage		Conditions (Note 3)	
V _{CCA}	-0.5V to +4.6V	Power Supply Operating (V_{CCA} or V_{CCB})	1.1V to 3.6V
V _{CCB}	-0.5V to +4.6V	Input Voltage	
DC Input Voltage (V _I)		Port A	0.0V to 3.6V
I/O Port A	-0.5V to +4.6V	Port B	0.0V to 3.6V
I/O Port B	-0.5V to +4.6V	Control Inputs (T/R, OE)	0.0V to V _{CCA}
Control Inputs (T/R, OE)	-0.5V to +4.6V	Output Current in I _{OH} /I _{OL}	
Output Voltage (V _O) (Note 2)		V _{CC}	
Outputs 3-STATE	-0.5V to +4.6V	3.0V to 3.6V	±24 mA
Outputs Active (A _n)	–0.5V to V_{CCA} + 0.5V	2.3V to 2.7V	±18 mA
Outputs Active (B _n)	–0.5V to $V_{\mbox{\scriptsize CCB}}$ + 0.5V	1.65V to 1.95V	±6 mA
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA	1.4V to 1.65V	±2 mA
DC Output Diode Current (I _{OK})		1.1V to 1.4V	±0.5 mA
V _O < 0V	–50 mA	Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
$V_{O} > V_{CC}$	+50 mA	Minimum Input Edge Rate ($\Delta V/\Delta t$)	
DC Output Source/Sink Current		$V_{CCA/B} = 1.1V$ to 3.6V	10 ns/V
(I _{OH} /I _{OL})	–50 mA / +50 mA		
DC V_{CC} or Ground Current per Supply Pin (I _{CC})	±100 mA	Note 1: The "Absolute Maximum Ratings" are those v the safety of the device cannot be guaranteed. The d operated at these limits. The parametric values defin	levice should not be ned in the Electrical
Storage Temperature Range (T _{STG})	-65°C to +150°C	Characteristics tables are not guaranteed at the absolu The "Recommended Operating Conditions" table will o for actual device operation.	

Note 2: I_O Absolute Maximum Rating must be observed. Note 3: All unused inputs must be held at V_{CCI} or GND.

Symbol	Parameter	Conditions	V _{ссі} (V)	V _{cco} (V)	Min	Max	Unit
V _{IH}	High Level Input Voltage	Data Inputs A _n , B _n	2.7 - 3.6		2.0		
(Note 4)			2.3 - 2.7		1.6		
			1.65 - 2.3	1.1 - 3.6	0.65 x V _{CCI}		
			1.4 - 1.65		0.65 x V _{CCI}		
			1.1 - 1.4		0.9 x V _{CCI}		v
		Control Pins/OE, T/R	2.7 - 3.6		2.0		v
		(Referenced to V _{CCA})	2.3 - 2.7		1.6		
			1.65 - 2.3	1.1 - 3.6	$0.65 \times V_{CCA}$		
			1.4 - 1.65		$0.65 \times V_{CCA}$		
			1.1 - 1.4		0.9 x V _{CCA}		
V _{IL}	Low Level Input Voltage	Data Inputs A _n , B _n	2.7 - 3.6			0.8	
(Note 4)			2.3 - 2.7			0.7	
			1.65 - 2.3	1.1 - 3.6		0.35 x V _{CCI}	
			1.4 - 1.65			0.35 x V _{CCI}	v
			1.1 - 1.4			0.1 x V _{CCI}	
		Control Pins/OE, T/R	2.7 - 3.6			0.8	v
		(Referenced to V _{CCA})	2.3 - 2.7			0.7	
			1.65 - 2.3	1.1 - 3.6		$0.35 \times V_{CCA}$	
			1.4 - 1.65			$0.35 \times V_{CCA}$	
			1.1 - 1.4			0.1 x V _{CCA}	

DC Electrical Characteristics

3

Symbol	Parameter	Conditions	V _{CCA} (V)	V _{ССВ} (V)	Min	Мах	Units
V _{OH}	High Level Output Voltage	I _{OH} = -100 μA	1.1 - 3.6	1.1 - 3.6	V _{CC0} - 0.2		
(Note 5)		$I_{OH} = -12 \text{ mA}$	2.7	2.7	2.2		
		I _{OH} = -18 mA	3.0	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	3.0	2.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.3	2.0		v
		$I_{OH} = -12 \text{ mA}$	2.3	2.3	1.8		•
		$I_{OH} = -18 \text{ mA}$	2.3	2.3	1.7		
		$I_{OH} = -6 \text{ mA}$	1.65	1.65	1.25		
		$I_{OH} = -2 \text{ mA}$	1.4	1.4	1.05		
		$I_{OH} = -0.5 \text{ mA}$	1.1	1.1	0.75 x V _{CC0}		
V _{OL}	Low Level Output Voltage	$I_{OL} = 100 \mu A$	1.1 - 3.6	1.1- 3.6		0.2	
(Note 5)		$I_{OL} = 12 \text{ mA}$	2.7	2.7		0.4	
		I _{OL} = 18 mA	3.0	3.0		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0	3.0		0.55	
		I _{OL} =12 mA	2.3	2.3		0.4	V
		I _{OL} = 18 mA	2.3	2.3		0.6	
		I _{OL} = 6 mA	1.65	1.65		0.3	
		$I_{OL} = 2 \text{ mA}$	1.4	1.4		0.35	
		$I_{OL} = 0.5 \text{ mA}$	1.1	1.1		0.3 x V _{CC0}	
I _I	Input Leakage Current. Control Pins	$V_I = V_{CCA}$ or GND	1.1 - 3.6	3.6		±1.0	μA
I _{OFF}	Power Off Leakage Current	A_n , V_l or $V_O = 0V$ to 3.6V	0	3.6		±10.0	μA
		B_n , V_l or $V_O = 0V$ to 3.6V	3.6	0		±10.0	μΛ
I _{OZ}	3-STATE Output Leakage	$A_n, B_n = V_{IH}$	3.6	3.6		±10.0	
(Note 6)	$0 \le V_O \le 3.6V$	B _n , OE = Don't Care	0	3.6		+10.0	μA
	$V_I = V_{IH} \text{ or } V_{IL}$	A_n , $\overline{OE} = Don't Care$	3.6	0		+10.0	
I _{CCA/B} (Note 7)	Quiescent Supply Current	$V_I = V_{CCI} \text{ or } GND; I_O = 0$	1.1 - 3.6	1.1 - 3.6		20.0	μA
I _{CCZ} (Note 7)	Quiescent Supply Current	$V_I = V_{CCI} \text{ or GND}; I_O = 0$	1.1 - 3.6	1.1 - 3.6		20.0	μΑ
I _{CCA}	Quiescent Supply Current	$V_I = V_{CCA}$ or GND; $I_O = 0$	0	1.1 - 3.6		-10.0	μΑ
		$V_I = V_{CCA}$ or GND; $I_O = 0$	1.1 - 3.6	0		10.0	μΑ
I _{CCB}	Quiescent Supply Current	$V_I = V_{CCB}$ or GND; $I_O = 0$	1.1 - 3.6	0		-10.0	μA
		$V_I = V_{CCB}$ or GND; $I_O = 0$	0	1.1 - 3.6		10.0	μΑ
$\Delta I_{CCA/B}$	Increase in I _{CC} per Input;	V _{IH} = 3.0	3.6	3.6		500	μA
	Other Inputs at V _{CC} or GND	1					•

Note 4: V_{CCI} = the V_{CC} associated with the data input under test.

Note 5: V_{CCO} = the V_{CC} associated with the output under test.

Note 6: Don't Care = Any valid logic level.

Note 7: Reflects current per supply, $V_{CCA} \text{ or } V_{CCB}.$

AC Electrical Characteristics v_{CCA} = 3.0V to 3.6V

			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$										
Symbol	Parameter	V _{CCB} = 3.0V to 3.6V			V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		св = о 1.6V	V _{CCB} = 1.1V to 1.3V		Units	
		Min	Max	Min	Мах	Min	Мах	Min	Мах	Min	Max	t	
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	1.4	22.0	ns	
	Propagation Delay B to A	0.2	3.5	0.2	3.8	0.3	4.0	0.5	4.3	0.8	13.0	115	
t _{PZH} , t _{PZL}	Output Enable OE to B	0.5	4.0	0.7	4.4	1.0	5.9	1.0	6.4	1.5	17.0	ns	
	Output Enable OE to A	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	115	
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0		
	Output Disable OE to A	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	ns	

AC Electrical Characteristics $v_{CCA} = 2.3V$ to 2.7V

	Parameter		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$										
Symbol		V _{CCB} = 3.0V to 3.6V			V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		св = о 1.6V	V _{CCB} = 1.1V to 1.3V		Units	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1	
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	ns	
	Propagation Delay B to A	0.3	3.9	0.4	4.2	0.5	4.5	0.5	4.8	1.0	7.0	115	
t _{PZH} , t _{PZL}	Output Enable OE to B	0.6	4.2	0.8	4.6	1.0	6.0	1.0	6.8	1.5	17.0	ns	
	Output Enable OE to A	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	115	
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	ns	
	Output Disable OE to A	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0		

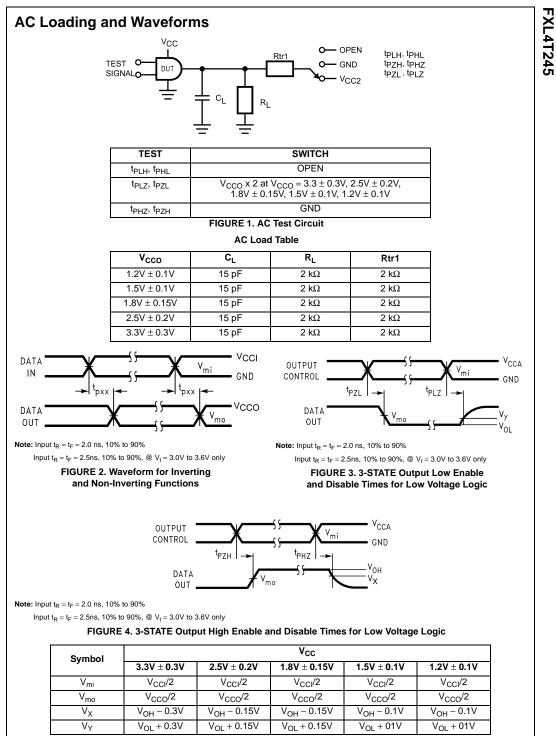
AC Electrical Characteristics $v_{CCA} = 1.65V$ to 1.95V

	Parameter	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$										
Symbol		V _{CCB} = 3.0V to 3.6V			V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		_{св} = о 1.6V	V _{CCB} = 1.1V to 1.3V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	İ
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	ns
	Propagation Delay B to A	0.5	5.4	0.5	5.6	0.8	5.7	1.0	6.0	1.2	8.0	113
t _{PZH} , t _{PZL}	Output Enable OE to B	0.6	5.2	0.8	5.4	1.2	6.9	1.2	7.2	1.5	18.0	ns
	Output Enable OE to A	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	115
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.2	5.1	0.2	5.2	0.8	5.2	1.5	7.0	2.0	17.0	ns
	Output Disable OE to A	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	115

AC Electrical Characteristics V_{CCA} = 1.4V to 1.6V

	Parameter		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$										
Symbol		V _{CCB} = 3.0V to 3.6V			V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		_{св} = о 1.6V	V _{CCB} = 1.1V to 1.3V		Units	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1	
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	ns	
	Propagation Delay B to A	0.6	6.8	0.8	6.9	0.9	7.1	1.0	7.3	1.3	9.5	113	
t _{PZH} , t _{PZL}	Output Enable OE to B	1.1	7.5	1.1	7.6	1.3	7.7	1.4	7.9	2.0	20.0	-	
	Output Enable OE to A	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	ns	
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	-	
	Output Disable OE to A	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	ns	

FXL4T245

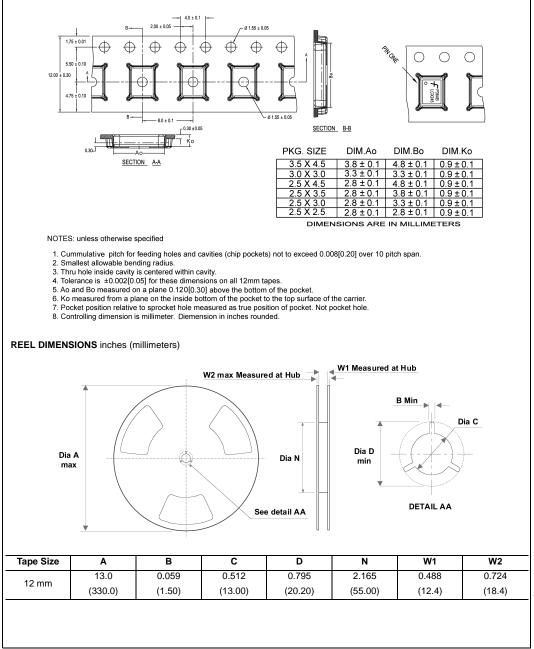

FXL4T245

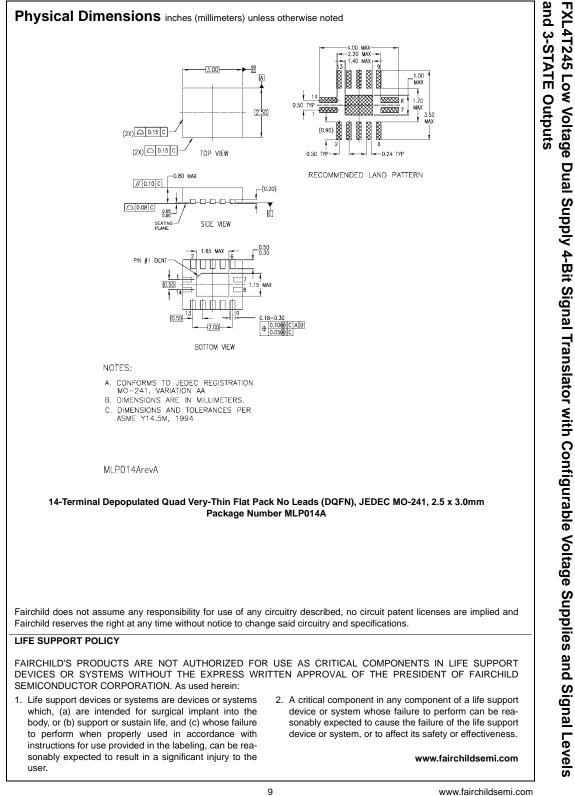
AC Electrical Characteristics $v_{CCA} = 1.1V$ to 1.3V

		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$										
Symbol	Parameter	V _{CCB} = 3.0V to 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} = 1.4V to 1.6V		V _{CCB} = 1.1V to 1.3V		Units
		Min	Max	Min	Мах	Min	Max	Min	Max	Min	Max	
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	-
	Propagation Delay B to A	1.4	22.0	1.4	22.0	1.5	22.0	1.5	22.0	2.0	24.0	ns
FZII/ FZL	Output Enable OE to B	1.0	12.0	1.0	9.0	2.0	10.0	2.0	11.0	2.0	24.0	ns
	Output Enable OE to A	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	
t _{PHZ} , t _{PLZ}	Output Disable OE to B	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	
	Output Disable OE to A	2.0	15.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0	12.0	ns

Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
Oymbol		Conditions	Typical	
CIN	Input Capacitance Control Pins (OE, T/R)	$V_{CCA} = V_{CCB} = 3.3$ V, $V_I = 0$ V or $V_{CCA/B}$	4.0	pF
C _{I/O}	Input/Output Capacitance An, Bn Ports	$V_{CCA} = V_{CCB} = 3.3V$, $V_I = 0V$ or $V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	V_{CCA} = V_{CCB} = 3.3V, V_{I} = 0V or V_{CC},F = 10 MHz	20.0	pF


Note: For V_{mi} : $V_{CCI} = V_{CCA}$ for Control Pins T/ \overline{R} and \overline{OE} , or $V_{CCA}/2$



Tape and Reel Specification

Tape Format for DC	pe Format for DQFN						
Package	Таре	Number	Cavity	Cover Tape			
Designator	Section	Cavities	Status	Status			
	Leader (Start End)	125 (typ)	Empty	Sealed			
BQX	Carrier	3000	Filled	Sealed			
	Trailer (Hub End)	75 (typ)	Empty	Sealed			

TAPE DIMENSIONS inches (millimeters)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC