

Low Quiescent Current, 150mA LDO Regulator

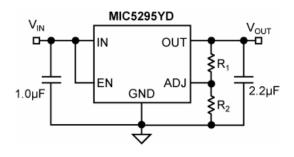
General Description

The MIC5295 is a 150mA highly accurate, low dropout regulator with high input voltage and low ground current. This combination of high voltage and low ground current makes the MIC5295 ideal for USB and portable electronics applications, using 1-cell, 2-cell or 3-cell Li-lon battery inputs.

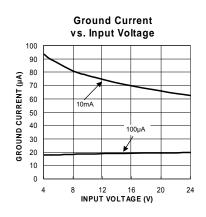
A μ Cap LDO design, the MIC5295 is stable with either a ceramic or tantalum output capacitor. It only requires a 2.2 μ F capacitor for stability.

Features of the MIC5295 includes enable input, thermal shutdown, current limit, reverse battery protection, and reverse leakage protection.

Available in fixed and adjustable output voltage versions, the MIC5295 is offered in the TO-252-5 (D-Pak) package with a junction temperature range of -40° C to $+125^{\circ}$ C.


Features

- Wide input voltage range: 2.3V to 24V
- Ultra low ground current: 18µA
- Low dropout voltage: 300mV at 150mA
- High initial output accuracy: ±1.0%
- Stable with ceramic or tantalum capacitors
- Excellent line and load regulation specifications
- Reverse battery protection
- Reverse leakage protection
- Thermal shutdown and current limit protection
- PowerTO-252-5 (D-Pak)package
- Adjustable output from 1.24V-20V

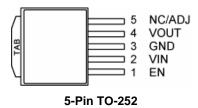

Applications

- USB power supply
- · Cellular phones
- · Keep-alive supply in notebook and portable computers
- Logic supply for high-voltage batteries
- Automotive electronics
- · Battery powered systems

Typical Application

Low Current Adjustable Regulator Application

Ground Current vs. Input Voltage


IttyBitty is a registered trademark of Micrel, Inc

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information

Part Number	Marking Code	Voltage	Junction Temp. Range	Package
MIC5295-3.0YD	5295-30Y	3.0V	–40° to +125°C	5-Pin TO-252
MIC5295-3.3YD	5295-33Y	3.3V	–40° to +125°C	5-Pin TO-252
MIC5295-5.0YD	5295-50Y	5.0V	–40° to +125°C	5-Pin TO-252
MIC5295YD	5295YD	Adj	–40° to +125°C	5-Pin TO-252

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
1	EN	Enable (Input): Logic low = shutdown; logic high = enable. Do not leave floating.
2	VIN	Supply Input.
3	GND	Ground.
4	VOUT	Regulator Output.
5	NC(fixed)	No Connect.
	ADJ(adj)	Adjust (Input): Feedback input. Connect to resistive Voltage-divider network.

Absolute Maximum Ratings⁽¹⁾

Input Supply Voltage	–20V to 38V
Enable Input Voltage	
Power Dissipation	Internally Limited
Junction Temperature	–40°C to +125°C
Storage Temperature ESD Rating ⁽³⁾	–65°C to +150°C
ESD Rating ⁽³⁾	ESD Sensitive

Operating Ratings⁽²⁾

2.3V to 24V
0V to 24V
–40°C to +125°C
50°C/W

Electrical Characteristics⁽⁴⁾

 $V_{IN} = V_{OUT} + 1V$; $I_{OUT} = 100\mu$ A; $C_{IN} = 1.0\mu$ F, $C_{OUT} = 2.2\mu$ A; $T_J = 25^{\circ}$ C, **bold** values indicate -40° C<T_J<+125^{\circ}C; unless otherwise specified.

Parameter	Condition	Min	Тур	Max	Units
Output Voltage Accuracy	Variation from nominal V _{OUT}	-1.0 -2.0		+1.0 +2.0	% %
Line Regulation	$V_{IN} = V_{OUT} + 1V$ to 24V		0.04		%
Load Regulation	Load = 100µA to 150mA		0.25	1	%
Dropout Voltage	I _{OUT} = 100μA 45	45		mV	
	I _{OUT} = 50mA		220	400	mV
	I _{OUT} = 100mA		260	450	mV
	I _{OUT} = 150mA		300	500	mV
Reference Voltage			1.24		V
		-1.0		+1.0	%
Ground Current	Ι _{ΟUT} = 100μΑ		18	30 35	μA μA
	$I_{OUT} = 50 \text{mA}$		0.35	0.7	mA
	I _{OUT} = 100mA I _{OUT} = 150mA		1	2	mA mA
Ground Current in Shutdown	$V_{\rm EN} = 0V; V_{\rm IN} = 24V$		0.1	1	μA
Current Limit	V _{OUT} = 0V		350	500	mA
Ripple Rejection	f=1kHz		50		dB
Output Voltage Noise	10Hz to 100kHz		47		μV _{RMS}
Output Leakage, Reverse Polarity Input	Load = 500Ω ; V _{IN} = $-15V$; V _{EN} = $0.4V$		-0.1		μA
Enable Input				1	1
Enable turn on time			1.2	10	ms
Input Low Voltage	Regulator OFF			0.4	V
Input High Voltage	Regulator ON	2.0			V
Enable Input Current	V _{EN} = 0.6V; Regulator OFF	-1.0	0.01	1.0	μA

Notes:

2. The device is not guaranteed to function outside its operating rating.

3. Devices are ESD sensitive. Handling precautions recommended. Human body model, $1.5k\Omega$ in series with 100pF.

V_{EN} = 2.0V; Regulator ON

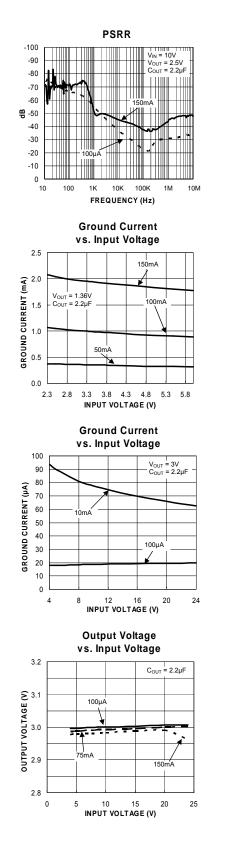
V_{EN} = 24V; Regulator ON

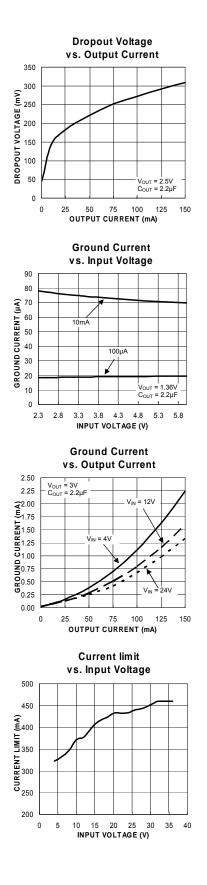
4. Specification for packaged product only.

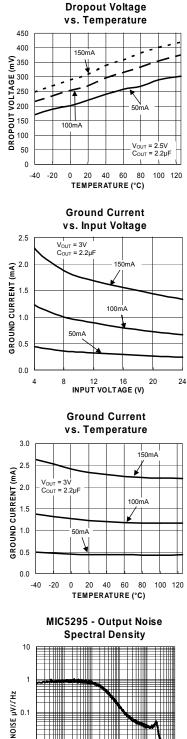
μA

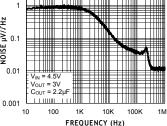
μA

1.0

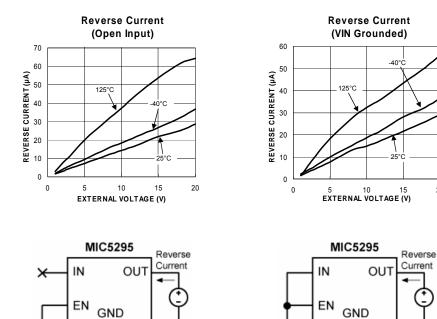

2.5


0.1

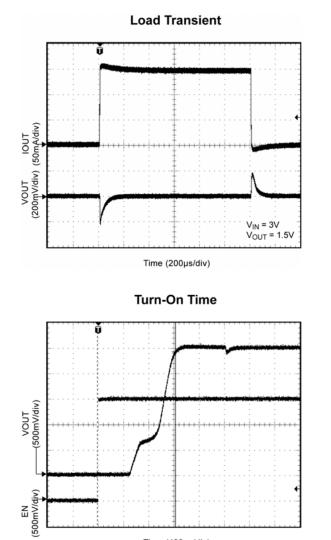

0.5


^{1.} Exceeding the absolute maximum rating may damage the device.

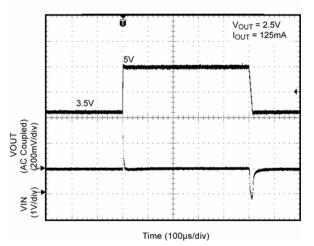
Typical Characteristics



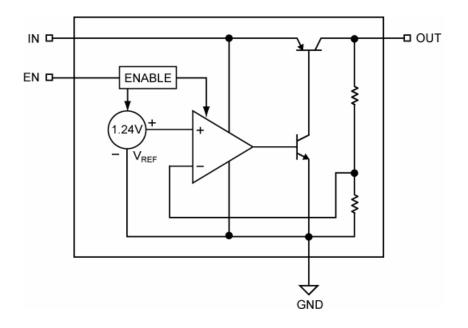
Typical Characteristics (continued)


Ŷ

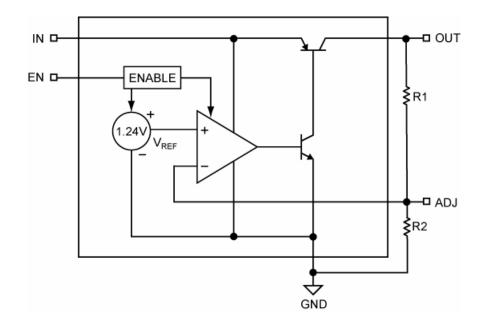
20


 $\overline{+}$

Functional Characteristics



Time (400µs/div)



Functional Diagram

Block Diagram – Fixed Output Voltage

Block Diagram – Adjustable Output Voltage

Application Information

Enable/Shutdown

The MIC5295 comes with an active-high enable pin that allows the regulator to be disabled. Forcing the enable pin low disables the regulator and sends it into a "zero" off-mode-current state. In this state, current consumed by the regulator goes nearly to zero. Forcing the enable pin high enables the output voltage. Do not leave this pin floating as the output will be in indeterminate state.

Input Capacitor

The MIC5295 has high input voltage capability up to 24V. The input capacitor must be rated to sustain voltages that may be used on the input. An input capacitor may be required when the device is not near the source power supply or when supplied by a battery. Small, surface mount, ceramic capacitors can be used for bypassing. Larger values may be required if the source supply has high ripple.

Output Capacitor

The MIC5295 requires an output capacitor for stability. The design requires 2.2μ F or greater on the output to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High ESR capacitors may cause high frequency oscillation. The maximum recommended ESR is 3Ω . The output capacitor can be increased without limit. Larger valued capacitors help to improve transient response.

X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60% respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than a X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

No-Load Stability

The MIC5295 will remain stable with no load unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications.

Thermal Considerations

The MIC5295 is designed to provide 150mA of continuous current in a small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the

part. For example, given that the input voltage of 3.3V the output voltage is 2.3V and the output current = 150mA. The actual power dissipation of the regulator circuit can be determined using the equation:

$$P_{\rm D} = (V_{\rm IN} - V_{\rm OUT})I_{\rm OUT} + V_{\rm IN} \times I_{\rm GND}$$

Due to the potential for input voltages up to 24V, ground current must be taken into consideration.

$$P_{D(MAX)} = (3.3 - 2.3V)150mA + 3.3x 1.2mA$$

 $P_{D(MAX)} = 0.154W$

The junction-to-ambient thermal resistance for the MIC5295, D-Pak is 50°C/W.To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

$$P_{D(MAX)} = \left(\frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}\right)$$

 $T_{J(MAX)}$ is the maximum junction temperature of the die, 125°C, the maximum ambient temperature can be calculated to be 117.3°C as shown below:

$$0.154W = \left(\frac{125^{\circ}C - T_{A}}{50^{\circ}C/W}\right)$$
$$T_{A} = 117.3^{\circ}C$$

Adjustable Regulator Application

The MIC5295YD can be adjusted from 1.24V to 20V by using two external resistors (Figure 1). The resistors set the output voltage based on the following equation:

$$V_{OUT} = V_{REF} \left(1 + \left(\frac{R_1}{R_2} \right) \right)$$

Where $V_{REF} = 1.24V$.

Feedback resistor R2 should be no larger than $300k\Omega$.

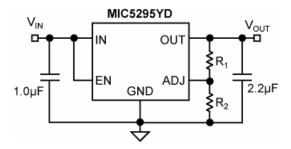
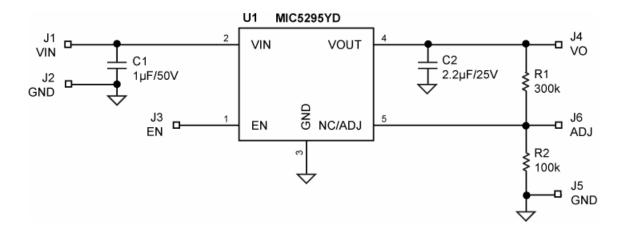



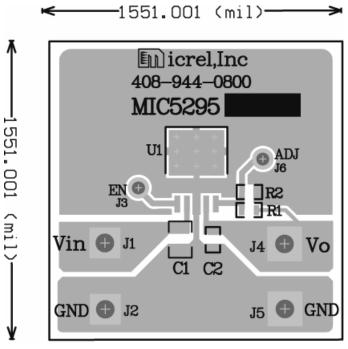
Figure 1. Adjustable Voltage Application

MIC5295

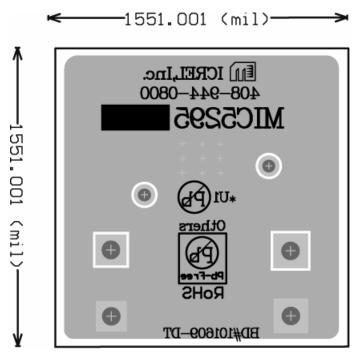
Evaluation Board Schematic

Bill of Materials

ltem	Part Number	Manufacturer	Description	Qty.
C1	UMK325BJ105KM-T	Taiyo Yuden ⁽¹⁾	Capacitor, 1µF, 50V, X5R, Size 1210	1
C2	TMK212BJ225KG-T	Taiyo Yuden	Capacitor, 2.2µF, 25V, X5R, Size 0805	1
R1	CRCW06033003FKEYE3	Vishay Dale ⁽²⁾	Resistor, 300k, 1%. 1/16W, Size 0603	1
R2	CRCW06031003FKEYE2	Vishay Dale	Resistor, 100k, 1%. 1/16W, Size 0603	1
U1	MIC5295YD	Micrel, Inc. ⁽³⁾	Low Quiescent Current, 150mA LDO Regulator	1

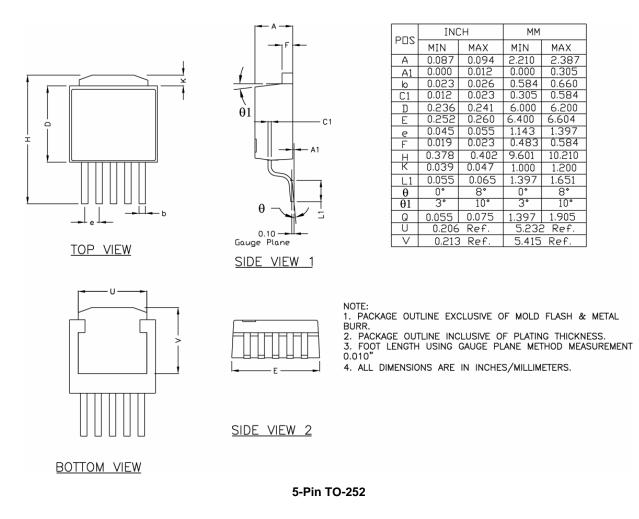

Notes:

1. Murata: www.t-yuden.com


2. Vishay: www.vishay.com.

3. Micrel, Inc.: www.micrel.com.

PCB Layout Recommendations



Top Layer

Bottom Layer

Package Information

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2009 Micrel, Incorporated.