

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

32-bit Microcontrollers

FR60Lite MB91265A Series

MB91267A/267NA/F267A/F267NA/V265A

■ DESCRIPTION

The MB91265A series is a 32-bit RISC microcontroller designed by Fujitsu Microelectronics for embedded control applications which require high-speed processing.

The CPU is used the FR family* and the compatibility of FR60Lite.

MB91267NA/F267NA loads the C-CAN (1 channel) .

*: FR is the abbreviation of FUJITSU RISC controller.

■ FEATURES

- FR60Lite CPU
 - 32-bit RISC, load/store architecture with a five-stage pipeline
 - Maximum operating frequency: 33 MHz (oscillation frequency 4.192 MHz, oscillation frequency 8-multiplier (PLL clock multiplication method)
 - 16-bit fixed length instructions (basic instructions)
 - Execution speed of instructions : 1 instruction per cycle
 - Memory-to-memory transfer, bit handling, barrel shift instructions, etc. : Instructions suitable for embedded applications
 - Function entry/exit instructions, multiple-register load/store instructions : Instructions adapted for C-language
 - Register interlock function: Facilitates coding in assembler.
 - Built-in multiplier with instruction-level support
 - 32-bit multiplication with sign : 5 cycles
 - 16-bit multiplication with sign: 3 cycles
 - Interrupt (PC, PS save): 6 cycles, 16 priority levels
 - · Harvard architecture allowing program access and data access to be executed simultaneously
 - Instruction compatible with FR family

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page URL: http://edevice.fujitsu.com/micom/en-support/

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

(Continued)

• Internal peripheral functions

	MB91V265A	MB91F267A	MB91F267NA	MB91267A	MB91267NA		
	Evaluation product	Flash memory product		MASK ROM product			
Package	PGA-401 (Lead pitch 2.54 mm interstitial)	LQFP-64 (Lead pitch 0.65 mm)					
ROM/Flash size	External SRAM	128 Kbytes					
RAM size	24 Kbytes	4 Kbytes					
C-CAN	1 channel	No	1 channel	No	1 channel		

• A/D converter (sequential comparison type)

Resolution : 8/10 bits : 4 channels \times 1 unit, 7 channels \times 1 unit

Conversion time: 1.2 µs (Minimum conversion time system clock at 33 MHz)

1.35 μs (Minimum conversion time system clock at 20 MHz)

- External interrupt input : 8 channels
- Bit search module (for REALOS)

Function for searching the MSB (upper bit) in each word for the first 1-to-0 inverted bit position

- C-CAN 32MSB: 1 channel (loaded in MB91267NA/F267NA)
- UART (Full-duplex double buffer): 2 channels

Selectable parity On/Off

Asynchronous (start-stop synchronized) or clock-synchronous communications selectable

Internal timer for dedicated baud rate (U-TIMER) on each channel

External clock can be used as transfer clock

Error detection function for parity, frame, and overrun errors

- 8/16-bit PPG timer: 8 channels (at 8-bit) / 4 channels (at 16-bit)
- Timing generator
- 16-bit reload timer: 3 channels (with cascade mode, without output of reload timer 0)
- 16-bit free-run timer: 3 channels
- 16-bit PWC timer: 1 channel
- Input capture : 4 channels (interface with free-run timer)
- Output compare: 6 channels (interface with free-run timer)
- Waveform generator

Various waveforms which are generated by using output compare, 16-bit PPG timer 0, and 16-bit dead timer

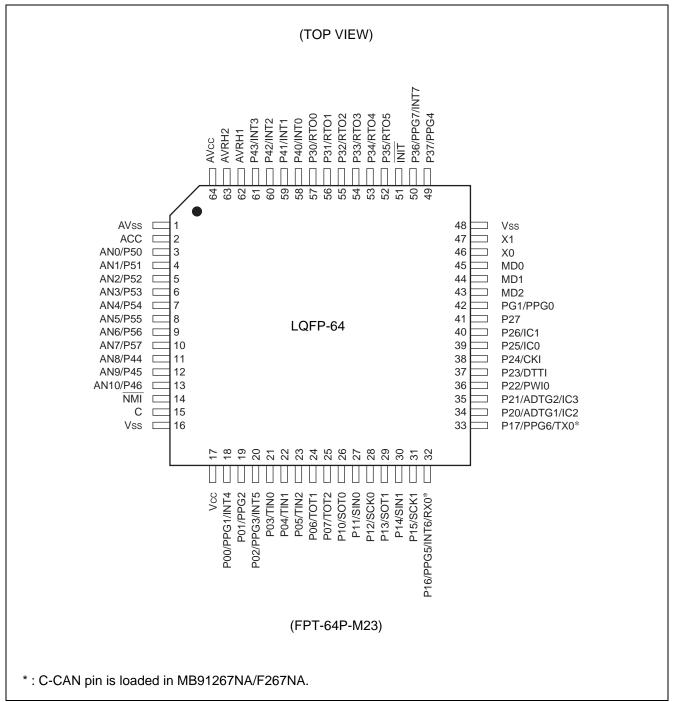
• SUM of products macro

RAM : instruction RAM (I-RAM) 256×16 -bit coefficient RAM (X-RAM) 64×16 -bit variable RAM (Y-RAM) 64×16 -bit

Execution of 1 cycle MAC (16-bit × 16-bit + 40 bits)

Operation results are extracted rounded from 40 to 16 bits

• DMAC (DMA Controller) : 5 channels


Operation of transfer and activation by internal peripheral interrupts and software

- Watchdog timer
- Low-power consumption mode

Sleep/stop function

- Package : LQFP-64
- Technology : CMOS 0.35 μm
- Power supply : 1-power supply (Vcc = 4.0 V to 5.5 V)

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.	Pin name	I/O Circuit type*1	Description
3	AN0	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
3	P50	9	General purpose input/output port. This function becomes valid when analog input is set to disabled.
4	AN1	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
7	P51	J	General purpose input/output port. This function becomes valid when analog input is set to disabled.
5	AN2	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
3	P52	9	General purpose input/output port. This function becomes valid when analog input is set to disabled.
G	AN3	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
6	P53	G	General purpose input/output port. This function becomes valid when analog input is set to disabled.
7	AN4	(Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
7	P54	G	General purpose input/output port. This function becomes valid when analog input is set to disabled.
0	AN5	(Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
8	P55	G	General purpose input/output port. This function becomes valid when analog input is set to disabled.
9	AN6	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
9	P56	G	General purpose input/output port. This function becomes valid when analog input is set to disabled.
10	AN7	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
10	P57	G	General purpose input/output port. This function becomes valid when analog input is set to disabled.
44	AN8	0	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
11	P44	G	General purpose input/output port. This function becomes valid when analog input is set to disabled.
40	AN9	0	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
12	P45	G	General purpose input/output port. This function becomes valid when analog input is set to disabled.

Pin no.	Pin name	I/O Circuit type*1	Description
13	AN10	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P46		General purpose input/output port. This function becomes valid when analog input is set to disabled.
14	NMI	Н	NMI (Non Maskable Interrupt) input terminal.
	INT4		External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
18	PPG1	E	Output terminal of PPG timer 1. This function becomes valid when output of PPG timer 1 is set to enabled.
	P00		General purpose input/output port. This function becomes valid when output of PPG timer 1 and external interrupt input are set to disabled.
10	PPG2	_	Output terminal of PPG timer 2. This function becomes valid when output of PPG timer 2 is set to enabled.
19	P01	D	General purpose input/output port. This function becomes valid when output of PPG timer 2 is set to disabled.
	INT5	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
20	PPG3		Output terminal of PPG timer 3. This function becomes valid when output of PPG timer 3 is set to enabled.
	P02		General purpose input/output port. This function becomes valid when output of PPG timer 3 and external interrupt input are set to disabled.
21	TIN0	D	External trigger input terminal of reload timer 0. Since this input is used as required while the trigger input is enabled, the port output must remain off unless intentionally used.
21	P03		General purpose input/output port. This function becomes valid when external clock input of reload timer 0 is set to disabled.
22	TIN1		External trigger input terminal of reload timer 1. Since this input is used as required while the trigger input is enabled, the port output must remain off unless intentionally used.
	P04	J	General purpose input/output port. This function becomes valid when external clock input of reload timer 1 is set to disabled.
23	TIN2	D	External trigger input terminal of reload timer 2. Since this input is used as required while the trigger input is enabled, the port output must remain off unless intentionally used.
20	P05	ט	General purpose input/output port. This function becomes valid when external clock input of reload timer 2 is set to disabled.

Pin no.	Pin name	I/O Circuit type*1	Description
24	TOT1	D	Output terminal of reload timer 1. This function becomes valid when output of reload timer 1 is set to enabled.
24	P06	D	General purpose input/output port. This function becomes valid when output of reload timer 1 is set to disabled.
25	TOT2	D	Output terminal of reload timer 2. This function becomes valid when output of reload timer 2 is set to enabled.
25	P07	Б	General purpose input/output port. This function becomes valid when output of reload timer 2 is set to disabled.
26	SOT0	D	UART0 data output terminal. This function becomes valid when data output of UART0 is set to enabled.
20	P10	D	General purpose input/output port. This function becomes valid when data output of UART0 is set to disabled.
27	SIN0	D	UART0 data input terminal. Since this input is used as required while the UART0 input is enabled, the port output must remain off unless intentionally used.
	P11		General purpose input/output port. This function becomes valid when data input of UART0 is set to disabled.
28	SCK0	D	UART0 clock input/output terminal. This function becomes valid when clock output of UART0 is set to enabled.
20	P12		General purpose input/output port. This function becomes valid when clock output of UART0 is set to disabled.
29	SOT1	D	UART1 data output terminal. This function becomes valid when data output of UART1 is set to enabled.
29	P13	D	General purpose input/output port. This function becomes valid when data output of UART1 is set to disabled.
30	SIN1	D	UART1 data input terminal. Since this input is used as required while the UART1 input is enabled, the port output must remain off unless intentionally used.
	P14		General purpose input/output port. This function becomes valid when data input of UART1 is set to disabled.
31	SCK1	D	UART1 clock input/output terminal. This function becomes valid when clock output of UART1 is set to enabled.
JI	P15	D	General purpose input/output port. This function becomes valid when clock output of UART1 is set to disabled.

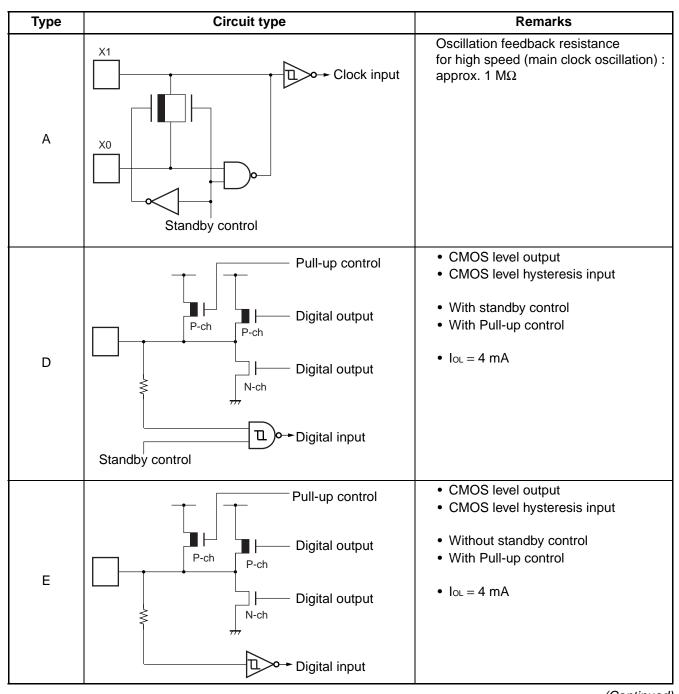
Pin no.	Pin name	I/O Circuit type*1			
	INT6		External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.		
	PPG5		Output terminal of PPG timer 5. This function becomes valid when output of PPG timer 5 is set to enabled.		
32	RX0	E	RX0 input terminal of C-CAN0 (MB91267NA/F267NA). Since this input is used as required while the RX0 input is enabled, port output must remain off unless intentionally used.		
	P16		General purpose input/output port. This function becomes valid when output of PPG timer 5 and RX0 input*2 of C-CAN0 are set to disabled.		
	PPG6		Output terminal of PPG timer 6. This function becomes valid when output of PPG timer 6 is set to enabled.		
33	TX0	D	TX0 output terminal of C-CAN0 (MB91267NA/F267NA) . This function becomes valid when TX0 output of C-CAN0 is set to enabled.		
	P17		General purpose input/output port. This function becomes valid when output of PPG timer 6 and TX0 output*2 of C-CAN0 are set to disabled.		
	ADTG1	D	External trigger input terminal of A/D converter 1. Since this input is used as required while it selects as A/D activation trigger cause, the port output must remain off unless intentionally used.		
34	IC2		Trigger input terminal of input capture 2. The port can serve as an input when set for input with the setting of the input capture trigger input. When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.		
	P20		General purpose input/output port. This function becomes valid when the setting of the external trigger input of A/D converter 1 or the setting of the input capture trigger input is set to disabled.		
	ADTG2		External trigger input terminal of A/D converter 2. Since this input is used as required while it selects as A/D activation trigger cause, the port output must remain off unless intentionally used.		
35	IC3	D	Trigger input terminal of input capture 3. The port can serve as an input when set for input with the setting of the input capture trigger input. When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.		
	P21		General purpose input/output port. This function becomes valid when the setting of the external trigger input of A/D converter 2 or the setting of the input capture trigger input is set to disabled.		
36	PWI0	D	Pulse width counter input of PWC timer 0 This function becomes valid when pulse width counter input of PWC timer 0 is set to enabled.		
50	P22	5	General purpose input/output port. This function becomes valid when pulse width counter input of PWC timer 0 is set to disabled. (Continued)		

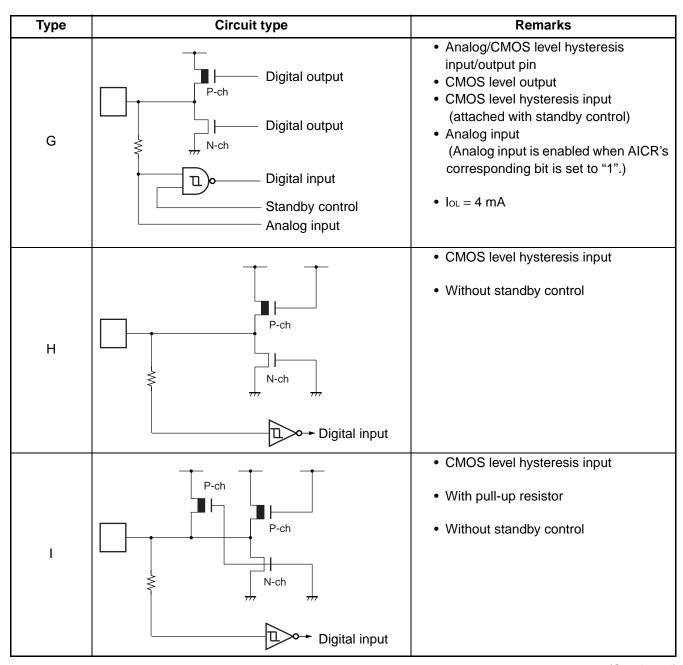
Pin no.	Pin name	I/O Circuit type*1			
37	DTTI	D	Control input signal of multi-function timer waveform generator output RTO0 to RTO5. This function becomes valid when DTTI input is set to enabled.		
37	P23	D	General purpose input/output port. This function becomes valid when input of DTTI is set to disabled.		
38	CKI	D	External clock input terminal of free-run timer. Since this input is used as required while the port is used for external clock input terminal of free-run timer, the port output must remain off unless intentionally used.		
30	P24	ט	General purpose input/output port. This function becomes valid when external clock input of free-run timer is set to disabled.		
39	IC0	D	Trigger input terminal of input capture 0. The port can serve as an input when set for input with the setting of the trigger input of input capture 0. When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.		
	P25		General purpose input/output port. This function becomes valid when trigger input of input capture 0 is set to disabled.		
40	IC1	D	Trigger input terminal of input capture 1. The port can serve as an input when set for input with the setting of the trigger input of input capture 1. When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.		
	P26		General purpose input/output port. This function becomes valid when trigger input of input capture 1 is set to disabled.		
41	P27	D	General purpose input/output port.		
42	PPG0	6	Output terminal of PPG timer 0. This function becomes valid when output of PPG timer 0 is set to enabled.		
42	PG1	D	General purpose input/output port. This function becomes valid when output of PPG timer 0 is set to disabled.		
43	MD2	H, K	Mode terminal 2. Setting this pin determines the basic operation mode. Connect to Vcc or Vss. The circuit type of flash memory models is K.		
44	MD1	H, K	Mode terminal 1. Setting this pin determines the basic operation mode. Connect to Vcc or Vss . The circuit type of flash memory models is K .		
45	MD0 H		Mode terminal 0. Setting this pin determines the basic operation mode. Connect to Vcc or Vss.		
46	X0	Α	Clock (oscillation) input terminal.		
47	X1	Α	Clock (oscillation) output terminal.		
49	PPG4	D	Output terminal of PPG timer 4. This function becomes valid when output of PPG timer 4 is set to enabled.		
73	P37	D	General purpose input/output port. This function becomes valid when output of PPG timer 4 is set to disabled.		

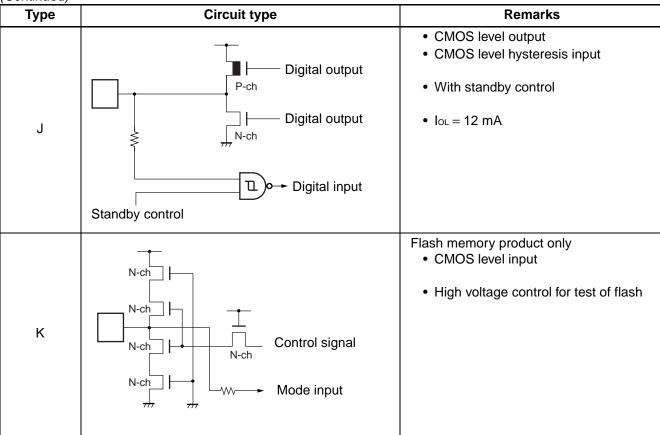
Pin no.	Pin name	I/O Circuit type*1			
	INT7		External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.		
50	PPG7	Е	Output terminal of PPG timer 7. This function becomes valid when output of PPG timer 7 is set to enabled.		
	P36		General purpose input/output port. This function becomes valid when output of PPG timer 7 is set to disabled.		
51	INIT	I	External reset input terminal.		
52	RTO5	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.		
	P35		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.		
53	RTO4	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.		
	P34		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.		
54	RTO3	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.		
	P33		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.		
55	RTO2	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.		
	P32		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.		
56	RTO1	RTO1 J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.		
	P31		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.		
57	RTO0	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.		
	P30		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.		
58	INT0	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.		
	P40		General purpose input/output port. This function becomes valid when external interrupt input is set to disabled.		

(Continued)

Pin no.	Pin name	I/O Circuit type*1	Description			
59	INT1	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.			
	P41		General purpose input/output port. This function becomes valid when external interrupt input is set to disabled.			
60	INT2	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.			
	P42	P42	General purpose input/output port. This function becomes valid when external interrupt input is set to disabled.			
61	INT3	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.			
-	P43		General purpose input/output port. This function becomes valid when external interrupt input is set to disabled.			


^{*1 :} For the I/O circuit type, refer to " ■ I/O CIRCUIT TYPE "


• Power supply and GND pins


Pin no.	Pin name	Description	
16, 48	Vss	GND pins. Apply equal potential to all of the pins.	
17	Power supply pin. Apply equal potential to all of the pins.		
64	AVcc	Analog power supply pin for A/D converter.	
63	AVRH2	Analog reference power supply pin for A/D converter 2.	
62	AVRH1	Analog reference power supply pin for A/D converter 1.	
1	AVss	Analog GND pin for A/D converter.	
15	15 C Condenser connection pin for internal regulator.		
2	ACC	Condenser connection pin for analog.	

^{*2 :} C-CAN is set in MB91267NA/F267NA.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage greater than Vcc pin or less than Vss pin is applied to an input or output pin or if an above-rating voltage is applied between Vcc and Vss pins.

A latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the absolute maximum rating.

Treatment of Unused Input Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pull-up or pull-down resistor.

About Power Supply Pins

In products with multiple V_{CC} or V_{SS} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between V_{CC} and V_{SS} pins near this device.

About Crystal Oscillator Circuit

Noise near the X0 and X1 pins may cause the device to malfunction. Design the printed circuit board so that X0 and X1 pins the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X0 and X1 pins surrounded by ground plane because stable operation can be expected with such a layout.

Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

About Mode Pins (MD0 to MD2)

These pins should be connected directly to Vcc or Vss pins.

To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and V_{CC} or V_{SS} pins is as short as possible and the connection impedance is low.

Operation at Start-up

Be sure to execute setting initialized reset (INIT) with $\overline{\text{INIT}}$ pin immediately after start-up.

Also, in order to provide the oscillation stabilization wait time for the oscillation circuit immediately after start-up, hold the "L" level input to the $\overline{\text{INIT}}$ pin for the required stabilization wait time (For INIT via the $\overline{\text{INIT}}$ pin, the oscillation stabilization wait time setting is initialized to the minimum value) .

Order of power turning ON/OFF

Use the following procedure for turning the power on or off.

Note that, even if the A/D converter is not used, keep the following pins connected with the level as described below.

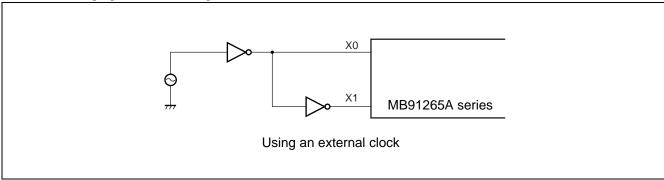
AVcc = Vcc level

AVss = Vss level

- When Powering ON: Vcc→AVcc→AVRH
- When Powering OFF : AVRH→AVcc→Vcc

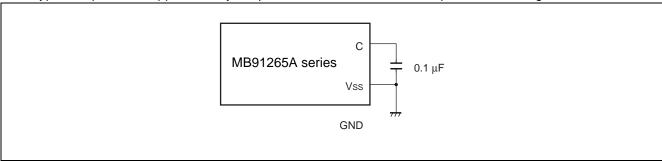
About Oscillation Input at Power On

When turning the power on, maintain clock input until the device is released from the oscillation stabilization wait state.

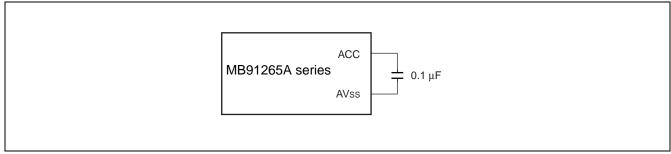

Caution for operation during PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu Microelectronics will not guarantee results of operations if such failure occurs.

External clock


When external clock is selected, the opposite phase clock to X0 pin must be supplied to X1 pin simultaneously. If the STOP mode (oscillation stop mode) is used simultaneously, the X1 pin is stopped with the "H" output. So, when STOP mode is specified, approximately 1 $k\Omega$ of resistance should be added externally to avoid the collision of output.

The following figure shows using an external clock.


C pin

A bypass capacitor of approximately 0.1 µF should be connected the C pin for built-in regulator.

ACC pin

A capacitor of approximately 0.1 μ F should be inserted between the ACC pin and the AVss pin as this product has built-in A/D converter.

Clock Control Block

Input the "L" signal to the INIT pin to assure the clock oscillation stabilization wait time.

Switch Shared Port Function

To switch between the use as a port and the use as a dedicated pin, use the port function register (PFR) .

Low Power Consumption Mode

To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit 8 in the TBCR : timebase counter control register) and be sure to use the following sequence

(LDI #value_of_standby, R0) : value_of_standby is write data to STCR. #_STCR, R12) : _STCR is address (481H) of STCR. (LDI STB R0, @R12 : Writing to standby control register (STCR) @R12, R0 : STCR read for synchronous standby **LDUB LDUB** @R12, R0 : Dummy re-read of STCR NOP : NOP × 5 for arrangement of timing NOP NOP NOP NOP

In addition, please set I flag, ILM, and ICR to diverge to the interruption handler that is the return factor after the standby returns.

- Please do not do the following when the monitor debugger is used.
- Break point setting for above instruction lines
- Step execution for above instruction lines

Notes on the PS register

As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated.

As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.

- The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS instruction is (a) acceptance of a user interrupt, (b) single-stepped, or (c) breaks in response to a data event or emulator menu:
 - 1) The D0 and D1 flags are updated in advance.
 - 2) An EIT handling routine (user interrupt or emulator) is executed.
 - 3) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed, and the D0 and D1 flags are updated to the same values as in 1).
- The following operations are performed when the ORCCR/STILM/MOVRi and PS instructions are executed to allow the interrupt.
 - 1) The PS register is updated in advance.
 - 2) An EIT handling routine (user interrupt) is executed.
 - 3) Upon returning from the EIT, the above instructions are executed, and the PS register is updated to the same value as in 1).

Watchdog Timer

The watchdog timer built in this model monitors a program that it defers a reset within a certain period of time. The watchdog timer resets the CPU if the program runs out of controls, preventing the reset defer function from being executed. Once the function of the watchdog timer is enabled, therefore, the watchdog timer keeps on operating programs until it resets the CPU.

As an exception, the watchdog timer defers a reset automatically under the condition in which the CPU stops program execution.

For those conditions to which this exception applies, refer to " NOTE ON DEBUGGER".

■ NOTE ON DEBUGGER

• Step execution of RETI command

If an interrupt occurs frequently during step execution, the corresponding interrupt handling routine is executed repeatedly after step execution.

This will prevent the main routine and low-interrupt-level programs from being executed.

Do not execute step of RETI instruction for escape.

Disable the corresponding interrupt and execute debugger when the corresponding interrupt handling routine no longer needs debugging.

Operand break

Do not apply a data event break to access to the area containing the address of a system stack pointer.

Execution in an unused area of flash memory

Accidentally executing an instruction in an unused area of flash memory (with data placed at 0xFFFF) prevents breaks from being accepted.

To prevent this, the code event address mask function of the debugger should be used to cause a break when accessing an instruction in an unused area.

Power-on debugging

All of the following three conditions must be satisfied when the power supply is turned off by power-on debugging.

- (1) The time for the user power to fall from 0.9 Vcc to 0.5 Vcc is 25 μs or longer. Note: In a dual-power system, Vcc indicates the external I/O power supply voltage.
- (2) CPU operating frequency must be higher than 1 MHz.
- (3) During execution of user program

• Interrupt handler for NMI request (tool)

Add the following program to the interrupt handler to prevent the device from malfunctioning in case the factor flag to be set only in response to a break request from the ICE is set, for example, by an adverse effect of noise to the DSU pin while the ICE is not connected. Enable to use the ICE while adding this program.

Additional location

Next interrupt handler

Interrupt source : NMI request (tool)

Interrupt number : #13 (decimal), 0D (hexadecimal)

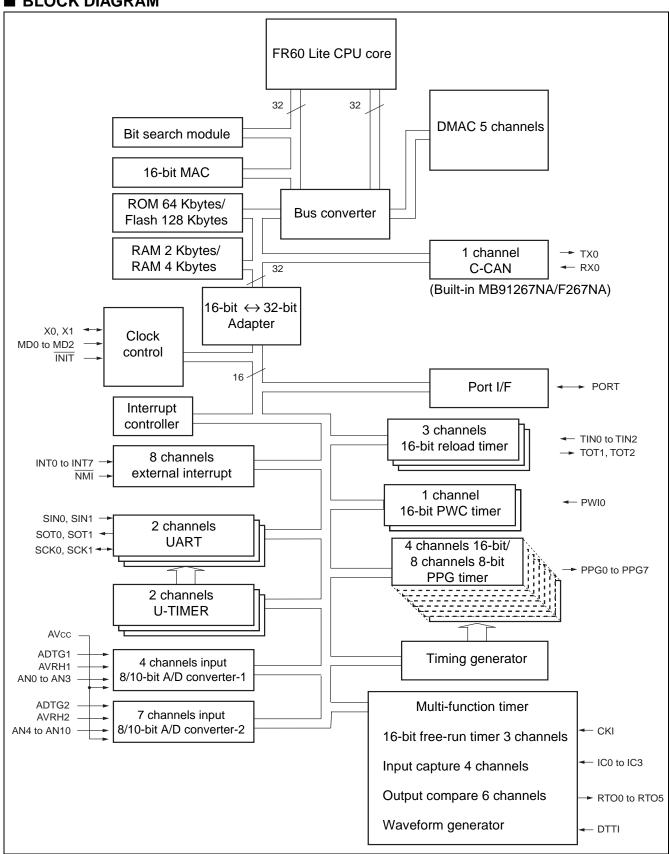
Offset : 3C8H

Address TBR is default : 000FFFC8H

Additional program

STM (R0, R1)

LDI #B00н, R0; : B00н is the address of DSU break factor register.


LDI #0, R1

STB R1, @R0 : Clear the break factor register.

LDM (R0, R1)

RETI

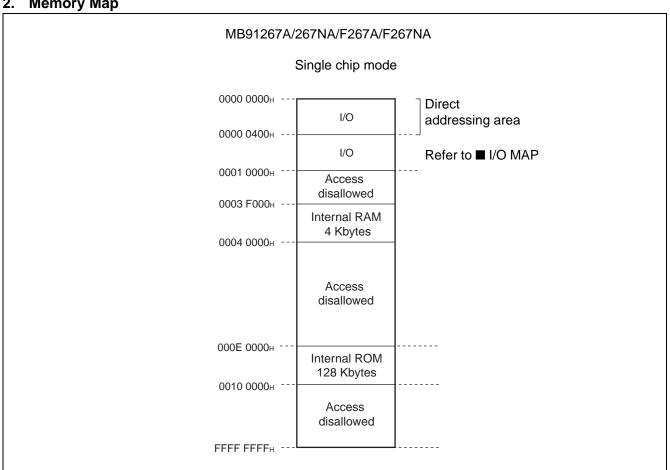
■ BLOCK DIAGRAM

■ MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2³² addresses) available to the CPU by linear access.

· Direct Addressing Areas


The following address space areas are used as I/O areas.

These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.

The size of directly addressable areas depends on the data size to be being accessed as follows.

→ byte data access : 000н to 0FFн \rightarrow half word data access : 000H to 1FFH : 000н to 3FFн → word data access

Memory Map 2.

■ MODE SETTINGS

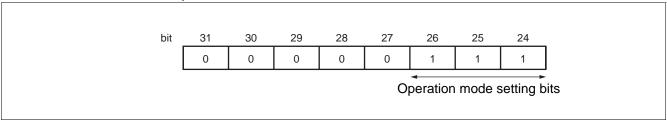
The FR family uses mode pins (MD2 to MD0) and a mode data to set the operation mode.

• Mode Pins

The MD2 to MD0 pins specify how the mode vector fetch and reset vector fetch is performed.

Setting is prohibited other than that shown in the following table.

M	Mode Pins		Mode name	Reset vector	Remarks
MD2	MD1	MD0	Widde Haille	access area	Remarks
0	0	0	Internal ROM mode vector	Internal	
0	0	1	External ROM mode vector	External	Not supported by this model.

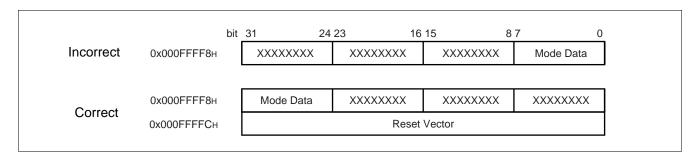

· Mode data

Data written to the internal mode register (MODR) by a mode vector fetch is called mode data.

After an operation mode has been set in the mode register, the device operates in the operation mode.

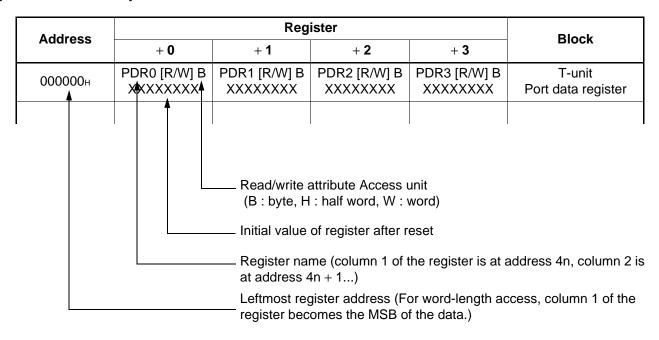
The mode data is set by all reset source. User programs cannot set data to the mode register.

Details of mode data description


Bit31 to bit24 are all reserved bits.

Be sure to set this bit to "00000111".

Operation is not guaranteed when any value other than "00000111" is set.


Note: Mode data set in the mode vector must be placed as byte data at 0x000FFFF8H.

Use the highest byte from bit31 to bit24 for placement as the FR family uses the big endian for byte endian.

■ I/O MAP

[How to read the table]

Note: Initial values of register bits are represented as follows:

" 1 " : Initial Value " 1 " " 0 " : Initial Value " 0 "

" X ": Initial Value " undefined"

" - " : No physical register at this location

Access is barred with an undefined data access attribute.

A -1 -1		Regis	ter		Disals
Address	+ 0	+ 1	+ 2	+ 3	Block
000000н	PDR0 [R/W] B, H, W XXXXXXXX	PDR1 [R/W] B, H, W XXXXXXXX	PDR2 [R/W] B, H, W XXXXXXXX	PDR3 [R/W] B, H, W XXXXXXXX	
000004н	PDR4 [R/W] B, H, W -XXXXXXX	PDR5 [R/W] B, H, W XXXXXXXX	_	_	Port data
000008н, 00000Сн			register		
000010н	PDRG [R/W] B, H, W				
000014н to 00003Сн		_			Reserved
000040н	EIRR0 [R/W] B, H, W 00000000	ENIR0 [R/W] B, H, W 00000000		W] B, H, W 00000000	External interrupt (INT0 to INT7)
000044н	DICR [R/W] B, H, W	HRCL [R/W, R] B, H, W 011111	_	_	Delay interrupt/ Hold request
000048н	TMRLR0 XXXXXXXX			R] H, W XXXXXXX	Reload
00004Сн	_	_	TMCSR0 [R/W, R] B, H, W 00000 00000000		timer 0
000050н	TMRLR1 XXXXXXXX		TMR1 [R] H, W XXXXXXXX XXXXXXX		Reload
000054н	_	_	TMCSR1 [R/W, R] B, H, W 00000 00000000		timer 1
000058н	TMRLR2 XXXXXXXX		TMR2 [R] H, W XXXXXXXX XXXXXXX		Reload
00005Сн	_	_	TMCSR2 [R/\ 00000	timer 2	
000060н	SSR0 [R/W, R] B, H, W 00001000	SIDR0 [R]/SODR0[W] B, H, W XXXXXXXX	SCR0 [R/W] B, H, W 00000100	SMR0 [R/W, W] B, H, W 000-0-	UART0
000064н	UTIM0 [R] H / 00000000		DRCL0 [W] B	UTIMC0 [R/W] B 000001	U-TIMER 0
000068н	SSR1 [R/W, R] B, H, W 00001000	SIDR1 [R]/SODR1[W] B, H, W XXXXXXXX	SCR1 [R/W] B, H, W 00000100	SMR1 [R/W] B, H, W 000-0-	UART1
00006Сн	UTIM1 [R] H / 00000000	DRCL1 [W] B	UTIMC1 [R/W] B 000001	U-TIMER 1	
000070н to 00007Сн		Reserved			
000080н	ADCH1 [R/W] B, H, W XXXX0XX0	ADMD1 [R/W] B, H, W 00001111	ADCD11 [R] B, H, W XXXXXXXX	ADCD10 [R] B, H, W XXXXXXXX	A/D
000084н	ADCS1 [R/W, W] B, H, W 00000X00	_	AICR1 [R/W] B, H, W	_	converter 1/ AICR1

Address		Regis	ster		Block		
Adaress	+ 0	+ 1	+ 2	+ 3	BIOCK		
000088н	ADCH2 [R/W] B, H, W XXXX0XX0	ADMD2 [R/W] B, H, W 00001111	ADCD21 [R] B, H, W XXXXXXXX	ADCD20 [R] B, H, W XXXXXXXX	A/D converter 2/		
00008Сн	ADCS2 [R/W, W] B, H, W 00000X00	_	AICR2 [R/W] B, H, W -0000000	_	AICR2		
000090н	OCCPBH0, OC OCCPH0, OCC 000000000	PL0[R] H, W	OCCPH1, OC	DCCPBL1[W] / CPL1 [R] H, W 00000000			
000094н	OCCPBH2, OC OCCPH2, OCC 000000000	PL2 [R] H, W	OCCPH3, OC	DCCPBL3[W] / CPL3 [R] H, W 00000000	16-bit		
000098н	OCCPBH4, OC OCCPH4, OCC 000000000	PL4 [R] H, W	OCCPH5, OC	DCCPBL5[W] / CPL5 [R] H, W 00000000	output compare		
00009Сн	OCSH1 [R/W] B, H, W X1100000	OCSL0 [R/W] B, H, W 00001100	OCSH3 [R/W] B, H, W X1100000	OCSL2 [R/W] B, H, W 00001100			
0000А0н	OCSH5 [R/W] B, H, W X1100000	OCSL4 [R/W] B, H, W 00001100	OCMOD [R/W] B, H, W XX000000	_			
0000А4н	CPCLRBH0, CPCLRBL0[W]/ CPCLRH0, CPCLRL0[R] H, W 11111111 11111111 TCDTH0, TCDTL0 [R/W] H, W 00000000 000000000						
0000А8н	TCCSH0 [R/W] B, H, W 00000000	TCCSL0 [R/W] B, H, W 01000000	_	ADTRGC [R/W] B, H, W XXXX0000	timer 0		
0000АСн	IPCPH0, IPCF XXXXXXXX >			CPL1 [R] H, W XXXXXXXX			
0000В0н	IPCPH2, IPCF XXXXXXXX >			CPL3 [R] H, W XXXXXXXX	16-bit input capture		
0000В4н	PICSH01 [W] B, H, W 00000000	PICSL01 [R/W] B, H, W 00000000	ICSH23 [R] B, H, W XXXXXX00	ICSL23 [R/W]B, H, W 00000000	Capture		
0000В8н			-		Reserved		
0000ВСн	TMRRH0, TMRR XXXXXXXX			RL1 [R/W] H, W XXXXXXXX			
0000С0н	TMRRH2, TMRR XXXXXXXX		-	_	Waveform		
0000С4н	DTCR0 [R/W] B, H, W 00000000	DTCR1 [R/W] B, H, W 00000000	DTCR2 [R/W] B, H, W 00000000	_	generator		
0000С8н	_	SIGCR1 [R/W] B, H, W 00000000	_	SIGCR2 [R/W] B, H, W XXXXXXX1			
0000ССн	_			[R/W] H, W 00000000			
0000D0н	ADCOMP2 [00000000 0		ADCOMPC2 [R/W] B, H, W XX0000XX	ADCOMPC1 [R/W] B, H, W XXXXX00X	A/D COMP		
0000D4н to 0000DCн		_	-		Reserved		

Address		Reg	ister		Block	
Address	+ 0	+ 1	+ 2	+ 3	DIOCK	
0000Е0н		W, R] B, H, W 00000000		[R] H, W 00000000	16-bit PWC	
0000Е4н			_		timer	
0000Е8н	_	PDIVR0 [R/W] B, H, W XXXXX000	_	_		
0000EСн to 0000FСн						
000100н	PRLH0 [R/W] B, H, W XXXXXXXX	PRLL0 [R/W] B, H, W XXXXXXXX	PRLH1 [R/W] B, H, W XXXXXXXX	PRLL1 [R/W] B, H, W XXXXXXXX		
000104н	PRLH2 [R/W] B, H, W XXXXXXXX	PRLL2 [R/W] B, H, W XXXXXXXX	PRLH3 [R/W] B, H, W XXXXXXXX	PRLL3 [R/W] B, H, W XXXXXXXX		
000108н	PPGC0 [R/W] B, H, W 00000000	PPGC1 [R/W] B, H, W 00000000	PPGC2 [R/W] B, H, W 00000000	PPGC3 [R/W] B, H, W 00000000	8/16-bit PPG timer 0 to 7	
00010Сн	PRLH4 [R/W] B, H, W XXXXXXXX	PRLL4 [R/W] B, H, W XXXXXXXX	PRLH5 [R/W] B, H, W XXXXXXXX	PRLL5 [R/W] B, H, W XXXXXXXX		
000110н	PRLH6 [R/W] B, H, W XXXXXXXX	PRLL6 [R/W] B, H, W XXXXXXXX	PRLH7 [R/W] B, H, W XXXXXXXX	PRLL7 [R/W] B, H, W XXXXXXXX		
000114н	PPGC4 [R/W] B, H, W 00000000	PPGC5 [R/W] B, H, W 00000000	PPGC6 [R/W] B, H, W 00000000	PPGC7 [R/W] B, H, W 00000000		
000118н to 00012Сн		_	_		Reserved	
000130н	_	V] B, H, W 0000000	_	GATEC [R/W] B, H, W XXXXXX00	8/16-bit	
000134н		W] B, H, W 0000000	_		PPG timer 0 to 7	
000138н to 000140н		_	_		Reserved	
000144н	TTCR0 [R/W] B, H, W 00000000	_	_	TSTPR0 [R] B, H, W 00000000		
000148н	COMP0 [R/W] B, H, W 00000000	COMP2 [R/W] B, H, W 00000000	COMP4 [R/W] B, H, W 00000000	COMP6 [R/W] B, H, W 00000000	Timing generator	
00014Сн, 000150н						
000154н	CPCLRBH1, CPCLRBL1 [W] / TCDTH1, TCDTL1 [R/W] H, W			16-bit free-run		
000158н	TCCSH1 [R/W] B, H, W 00000000	TCCSL1 [R/W] B, H, W 01000000	_	_	timer 1	

A -1-1		Regis	ter		Disale
Address	+ 0	+ 1	+ 2	+ 3	Block
00015Сн	CPCLRBH2, CP CPCLRH2, CPC 111111111 1	LRL2 [R] H, W 1111111	1	TL2 [R/W] H, W 00000000	16-bit free-run
000160н	TCCSH2 [R/W] B, H, W 00000000	TCCSL2 [R/W] B, H, W 01000000	_	_	timer 2
000164н		_			Reserved
000168н	_	FSR2 [R/W] B, H, W 00000000	FSR1 [R/W] B, H, W 0000	FSR0 [R/W] B, H, W 00000000	FRT selector
00016Сн					Danamiad
to 0001A4н		_			Reserved
0001А8н	CANPRE [R, R/W] B, H, W 00000000		_		C-CAN*1 prescaler
0001АСн					D
to 0001FCн		_			Reserved
000200н		DMACA0 [R/W 00000000 0000XXXX XX			
000204н	DMACB0 [R/W] B, H, W 00000000 00000000 XXXXXXXX XXXXXXX				
000208н	DMACA1 [R/W] B, H, W*2 00000000 0000XXXX XXXXXXXX XXXXXXXX				
00020Сн		DMACB1 [R/V 00000000 00000000 XXX			- DMAC
000210н		DMACA2 [R/W 00000000 0000XXXX XX			
000214н		DMACB2 [R/V 00000000 00000000 XXX			DIVIAC
000218н		DMACA3 [R/W 00000000 0000XXXX XX			
00021Сн		DMACB3 [R/V 00000000 00000000 XXX	XXXXXX XXXXXXXX		_
000220н		DMACA4 [R/W 00000000 0000XXXX XX			_
000224н	DMACB4 [R/W] B, H, W 00000000 00000000 XXXXXXXXXXXXXXXXXXX				
000228н to 00023Сн	_				
000240н	DMACR [R/W] B 0XX00000 XXXXXXXX XXXXXXXX				
000244н to 000398н		_			Reserved

Address		Reg	gister		Block	
Address	+ 0	+ 1	+ 2	+ 3	BIOCK	
00039Сн			_			
0003А0н	DSP-PC [R/W] XXXXXXXX	DSP-CSR [R/W, R, W] 00000000		Y [R/W] XXXXXXXX		
0003А4н		OT0 [R] (XXXXXXXX		OT1 [R] (XXXXXXXX		
0003А8н	DSP-OT2 [R] DSP-OT3 [R] XXXXXXXX XXXXXXXX XXXXXXXX				16-bit MAC	
0003АСн	_					
0003В0н	DSP-OT4 [R] DSP-OT5 [R] XXXXXXXX XXXXXXXX XXXXXXXX					
0003В4н	DSP-OT6[R] DSP-OT7 [R] XXXXXXXX XXXXXXXX XXXXXXXX					
0003В8н						
0003BСн					Reserved	
to 0003EСн					Reserved	
0003F0н	BSD0 [W] W XXXXXXXX XXXXXXXX XXXXXXXX					
0003F4н	BSD1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX					
0003F8н	BSDC [W] W XXXXXXXX XXXXXXXX XXXXXXXX					
0003FСн			RR [R] (XXXXXXXX XXXXXXX	X		
000400н	DDR0 [R/W] B, H, W 00000000	DDR1 [R/W] B, H, W 00000000	DDR2 [R/W] B, H, W 00000000	DDR3 [R/W] B, H, W 00000000		
000404н	DDR4 [R/W] B, H, W -0000000	DDR5 [R/W] B, H, W 00000000	-	_	Data	
000408н, 00040Сн			_		direction register	
000410н	DDRG [R/W] B, H, W		_			
000414н to			_		Reserved	
00041Сн						
000420н	PFR0 [R/W] B, H, W 0-0-00-0					
000424н to 00042Сн			_		Port function register	
000430н		_		PTFR0 [R/W] B, H, W 00000000		

A 11		Reg	ister		Dist	
Address	+ 0	+ 1	+ 2	+ 3	Block	
000434н to 00043Сн		-	_		Reserved	
000440н	ICR00 [R/W, R] B, H, W	ICR01 [R/W, R] B, H, W 1111	ICR02 [R/W, R] B, H, W	ICR03 [R/W, R] B, H, W		
000444н	ICR04 [R/W, R] B, H, W	ICR05 [R/W, R] B, H, W 1111	ICR06 [R/W, R] B, H, W1111	ICR07 [R/W, R] B, H, W1111		
000448н	ICR08 [R/W, R] B, H, W	ICR09 [R/W, R] B, H, W 1111	ICR10 [R/W, R] B, H, W1111	ICR11 [R/W, R] B, H, W 1111		
00044Сн	ICR12 [R/W, R] B, H, W 1111	ICR13 [R/W, R] B, H, W 1111	ICR14 [R/W, R] B, H, W 1111	ICR15 [R/W, R] B, H, W 1111		
000450н	ICR16 [R/W, R] B, H, W	ICR17 [R/W, R] B, H, W 1111	ICR18 [R/W, R] B, H, W 1111	ICR19 [R/W, R] B, H, W 1111		
000454н	ICR20 [R/W, R] B, H, W 1111	ICR21 [R/W, R] B, H, W 1111	ICR22 [R/W, R] B, H, W 1111	ICR23 [R/W, R] B, H, W 1111	Interrupt	
000458н	ICR24 [R/W, R] B, H, W 1111	ICR25 [R/W, R] B, H, W 1111	ICR26 [R/W, R] B, H, W 1111	ICR27 [R/W, R] B, H, W 1111	control unit	
00045Сн	ICR28 [R/W, R] B, H, W ICR29	ICR29 [R/W, R] B, H, W	ICR30 [R/W, R] B, H, W1111	ICR31 [R/W, R] B, H, W	<i>,</i>	
000460н	ICR32 [R/W, R] B, H, W	ICR33 [R/W, R] B, H, W	ICR34 [R/W, R] B, H, W	ICR35 [R/W, R] B, H, W		
000464н	ICR36 [R/W, R] B, H, W	ICR37 [R/W, R] B, H, W	ICR38 [R/W, R] B, H, W	ICR39 [R/W, R] B, H, W		
000468н	ICR40 [R/W, R] B, H, W	ICR41 [R/W, R] B, H, W	ICR42 [R/W, R] B, H, W	ICR43 [R/W, R] B, H, W		
00046Сн	ICR44 [R/W, R] B, H, W 1111	ICR45 [R/W, R] B, H, W 1111	ICR46 [R/W, R] B, H, W 1111	ICR47 [R/W, R] B, H, W 1111		
000470н to 00047Сн	_					
000480н	RSRR [R/W] B, H, W 10000000	STCR [R/W] B, H, W 00110011	TBCR [R/W] B, H, W 00XXXX00	CTBR [W] B, H, W XXXXXXX		
000484н	CLKR [R/W] B, H, W 00000000	WPR [W] B, H, W XXXXXXXX	DIVR0 [R/W] B, H, W 00000011	DIVR1 [R/W] B, H, W 00000000	Clock control	
000488н to 000490н		-	_		CONTROL	
000494н to 0005FCн		-	_		Reserved	

	Register							
Address	+ 0	+ 1	+ 2	+ 3	Block			
000600н	PCR0 [R/W] B, H, W 00000000	PCR1 [R/W] B, H, W 00000000	PCR2 [R/W] B, H, W 00000000	PCR3 [R/W] B, H, W 00				
000604н	PCR4 [R/W] B, H, W							
000608н, 00060Сн			_		Control Unit			
000610н	PCRG [R/W] B, H, W		_					
000614н to 000FFCн	_							
001000н			0 [R/W] W X XXXXXXXX XXXXXX	X				
001004н			0 [R/W] W X XXXXXXXX XXXXXXX	X				
001008н			1 [R/W] W X XXXXXXXX XXXXXX	X				
00100Сн	DMADA1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX							
001010н	OH DMASA2 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX							
001014н	DMADA2 IR/WI W							
001018н			3 [R/W] W	X	-			
00101Сн			3 [R/W] W X XXXXXXXX XXXXXX	X	-			
001020н			4 [R/W] W X XXXXXXXX XXXXXX	X				
001024н			4 [R/W] W X XXXXXXXX XXXXXXX	X				
001028н to			_		Reserved			
006FFCн		I						
007000н	FLCR [R/W] B 01101000		_					
007004н	FLWC [R/W] B 00000011		_		Flash			
007008н to			_					
007010н								
007014н to			_		Reserved			
00BFFCн								

A 11		Blead				
Address	+ 0	+ 1	+ 2	+ 3	Block	
00С000н	_	X-RAM (coeffici	ent RAM) [R/W]			
to 00С07Сн		64 ×	16-bit			
00С080н						
to 00C0FC _H		16-bit MAC				
00С100н	I-RAM (instruction RAM) [R/W]					
to 00C2FC _H						
00С300н					Reserved	
to 00FFFC _H	-					
020000н	CTRLR0 [I 00000000 0	-	STATR0 00000000			
020004н	ERRCNT0 [R] 00000000 00000000 INTR0 [R] 00000000 00000000 BRPER0 [R, R/W] 00000000 00000000 IF1CREQ0 [R, R/W] 00000000 00000000		BTR0 [F 00100011 (•		
020008н 02000Сн			TESTR0 000000000 2			
			_			
020010н			IF1CMSK0 00000000			
020014н	IF1MSK20 11111111 1		IF1MSK1 11111111			
020018н	IF1ARB20 00000000 0		IF1ARB1 00000000			
02001Сн	IF1MCTR0 00000000 0		_	_	C-CAN*1	
020020н	IF1DTA10 00000000 0		IF1DTA2 00000000			
020024н	IF1DTB10 00000000 0		IF1DTB2 00000000			
020030н		,	little endian byte orderin	g)		
020040н	IF2CREQ0 00000000 0		IF2CMSK0 00000000			
020044н	IF2MSK20 11111111 1		IF2MSK1 11111111			
020048н	IF2ARB20 00000000 0		IF2ARB1 00000000			
02004Сн	IF2MCTR0 00000000 0		_	-		
020050н	IF2DTA10 00000000 0		IF2DTA2 00000000			

(Continued)

Address		Reg	ister		Block
Address —	+ 0	+ 1	+ 2	+ 3	- Block
020054н		10 [R/W] 00000000		320 [R/W] 0 00000000	
020060н	R	eserved (IF2 data mirror,	little endian byte order	ring)	
020080н	Он TREQR20 [R] TREQR10 [R] 000000000 00000000 000000000 000000000				
020084н	Reserved (>32128 Message buffer)				
020090н	NEWDT20 [R] NEWDT10 [R] 00000000 00000000 000000000			C-CAN*1	
020094н	Reserved (>32128 Message buffer)				
0200А0н)AO _H			ND10 [R] 0 00000000	
0200А4н	DA4н Reserved (>32128 Message buffer)				
0200В0н	MESVAL20 [R] MESVAL10 [R] 00000000 00000000 00000000		• •		
0200В4н		Reserved (>3212	8 Message buffer)		

^{*1:} C-CAN is loaded in MB91267NA/F267NA.

Notes: • The initial value of FLWC (7004_H) is "00010011_B" on EVA tool. Writing "00000011_B" on the evaluation model has no effect on its operation.

- Do not execute Read Modify Write instructions on registers having a write-only bit.
- Data is undefined in reserved or (-) area.

^{*2:} The lower 16 bits (DTC15 to DTC0) of DMACA0 to DMACA4 cannot be accessed in bytes.

■ INTERRUPT VECTOR

	Interrup	t number	Into wee and		TDD default
Interrupt source	Decimal	Hexa- decimal	Interrupt level	Offset	TBR default address
Reset	0	00	_	3FСн	000FFFCн
Mode vector	1	01		3F8н	000FFFF8н
System reserved	2	02		3F4н	000FFFF4н
System reserved	3	03		3F0н	000FFFOн
System reserved	4	04	_	3ЕСн	000FFFECн
System reserved	5	05	_	3Е8н	000FFFE8н
System reserved	6	06	_	3Е4н	000FFFE4н
Coprocessor absent trap	7	07	_	3Е0н	000FFFE0н
Coprocessor error trap	8	08	_	3DСн	000FFFDCн
INTE instruction	9	09		3D8 _H	000FFFD8н
System reserved	10	0A	_	3D4н	000FFFD4н
System reserved	11	0B	_	3D0н	000FFFD0н
Step trace trap	12	0C		3ССн	000FFFCCн
NMI request (tool)	13	0D	_	3С8н	000FFFC8н
Undefined instruction exception	14	0E	_	3С4н	000FFFC4н
NMI request	15	0F	15 (Fн) fixed	3С0н	000FFFC0н
External interrupt 0	16	10	ICR00	3ВСн	000FFFBCн
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н
External interrupt 2	18	12	ICR02	3В4н	000FFFB4н
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н
External interrupt 4	20	14	ICR04	3АСн	000FFFACн
External interrupt 5	21	15	ICR05	3А8н	000FFFA8н
External interrupt 6/C-CAN wake up*	22	16	ICR06	3А4н	000FFFA4н
External interrupt 7	23	17	ICR07	3А0н	000FFFA0н
Reload timer 0	24	18	ICR08	39Сн	000FFF9Сн
Reload timer 1	25	19	ICR09	398н	000FFF98н
Reload timer 2	26	1A	ICR10	394н	000FFF94н
UART0(Reception completed)	27	1B	ICR11	390н	000FFF90н
UART0 (RX completed)	28	1C	ICR12	38Сн	000FFF8Сн
DTTI	29	1D	ICR13	388н	000FFF88н
DMAC0 (end, error)	30	1E	ICR14	384н	000FFF84н
DMAC1 (end, error)	31	1F	ICR15	380н	000FFF80н
DMAC2/DMAC3/DMAC4 (end, error)	32	20	ICR16	37Сн	000FFF7Сн

	Interrupt	number	Into		TDD defects
Interrupt source	Decimal	Hexa- decimal	Interrupt level	Offset	TBR default address
UART1(Reception completed)	33	21	ICR17	378н	000FFF78н
UART1 (RX completed)	34	22	ICR18	374н	000FFF74н
C-CAN0*	35	23	ICR19	370н	000FFF70н
System reserved	36	24	ICR20	36Сн	000FFF6Сн
16-bit MAC	37	25	ICR21	368н	000FFF68н
PPG0/PPG1	38	26	ICR22	364н	000FFF64н
PPG2/PPG3	39	27	ICR23	360н	000FFF60н
PPG4/PPG5/PPG6/PPG7	40	28	ICR24	35Сн	000FFF5Сн
System reserved	41	29	ICR25	358н	000FFF58н
Waveform0/1/2 (underflow)	42	2A	ICR26	354н	000FFF54н
Free-run timer 1 (compare clear)	43	2B	ICR27	350н	000FFF50н
Free-run timer 1 (zero detection)	44	2C	ICR28	34Сн	000FFF4Сн
Free-run timer 2 (compare clear)	45	2D	ICR29	348н	000FFF48н
Free-run timer 2 (zero detection)	46	2E	ICR30	344н	000FFF44н
Timebase timer overflow	47	2F	ICR31	340н	000FFF40н
Free-run timer 0 (compare clear)	48	30	ICR32	33Сн	000FFF3Сн
Free-run timer 0 (zero detection)	49	31	ICR33	338н	000FFF38н
System reserved	50	32	ICR34	334н	000FFF34н
A/D converter 1	51	33	ICR35	330н	000FFF30н
A/D converter 2	52	34	ICR36	32Сн	000FFF2Сн
PWC0 (measurement completed)	53	35	ICR37	328н	000FFF28н
System reserved	54	36	ICR38	324н	000FFF24н
PWC0 (overflow)	55	37	ICR39	320н	000FFF20н
System reserved	56	38	ICR40	31Сн	000FFF1Сн
ICU0 (capture)	57	39	ICR41	318н	000FFF18н
ICU1 (capture)	58	3A	ICR42	314н	000FFF14н
ICU2/3 (capture)	59	3B	ICR43	310н	000FFF10н
OCU0/1 (match)	60	3C	ICR44	30Сн	000FFF0Сн
OCU2/3 (match)	61	3D	ICR45	308н	000FFF08н
OCU4/5 (match)	62	3E	ICR46	304н	000FFF04н
Delay interrupt source bit	63	3F	ICR47	300н	000FFF00н
System reserved (Used by REALOS)	64	40		2FCн	000FFEFCн
System reserved (Used by REALOS)	65	41		2F8 _H	000FFEF8н

	Interrupt	t number	Interrupt		TBR default	
Interrupt source	Decimal	Hexa- decimal	Interrupt level	Offset	address	
System reserved	66	42	_	2F4н	000FFEF4н	
System reserved	67	43		2F0н	000FFEF0н	
System reserved	68	44		2ЕСн	000FFEECн	
System reserved	69	45		2Е8н	000FFEE8н	
System reserved	70	46		2Е4н	000FFEE4н	
System reserved	71	47		2Е0н	000FFEE0н	
System reserved	72	48		2DC _H	000FFEDCн	
System reserved	73	49		2D8н	000FFED8н	
System reserved	74	4A		2D4н	000FFED4н	
System reserved	75	4B		2D0н	000FFED0н	
System reserved	76	4C		2ССн	000FFECCн	
System reserved	77	4D		2С8н	000FFEC8н	
System reserved	78	4E		2С4н	000FFEC4н	
System reserved	79	4F	_	2С0н	000FFEC0н	
Used by INT instruction	80 to 255	50 to FF	_	2ВСн to 000н	000FFEBCн to 000FFC00н	

^{*:} C-CAN interrupt is only loaded in MB91267NA/F267NA.

■ PIN STATUS IN EACH CPU STATE

Terms used as the status of pins mean as follows.

- Input enabled
 Indicates that the input function can be used.
- Input 0 fixed Indicates that the input level has been internally fixed to be 0 to prevent leakage when the input is released.
- Output Hi-Z
- Output is maintained.
 Indicates the output in the output state existing immediately before this mode is established.
 If the device enters this mode with an internal output peripheral operating or while serving as an output port, the output is performed by the internal peripheral or the port output is maintained, respectively.
- State existing immediately before is maintained.
 When the device serves for output or input immediately before entering this mode, the device maintains the output or is ready for the input, respectively.

• List of pin status (single chip mode)

Pin no.	Pin name	Function	At initi	alizing	At sleep	At Stop	mode
Fill lio.	riii iiaiiie	Function	INIT = L*1	INIT = H*2	mode	Hi-Z = 0	Hi-Z = 1
3 to 10	P50 to P57	AN0 to AN7	Output Hi-Z/	Output Hi-Z/	Retention of	Retention	0
11 to 13	P44 to P46	AN8 to AN10	Input disabled	Input enabled	the immedi- ately prior state	of the immediately prior state	Output Hi-Z/ Input 0 fixed
14	NMI	NMI	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
18	P00	PPG1/INT4			Chabled	Chabica	Chabled
19	P01	PPG2			Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
20	P02	PPG3/INT5			Input enabled	Input enabled	Input enabled
21 to 23	P03 to P05	TIN0 to TIN2					
24, 25	P06, P07	TOT1, TOT2	Output Hi-Z/	Output Hi-Z/			
26	P10	SOT0	Input disabled	Input enabled	Retention	Retention	
27	P11	SIN0	uisabieu	enabled	of the	of the	Output Hi-Z/
28	P12	SCK0			immediately	immediately	Input 0 fixed
29	P13	SOT1			prior state	prior state	
30	P14	SIN1					
31	P15	SCK1					
32	P16	PPG5/INT6/ RX0* ³			Input enabled	Input enabled	Input enabled

(Continued)

(Continued)

Pin no.	Pin name	Function	At initi	ializing	At sleep	At Stop	mode
Pili lio.	riii iiaiiie	Function	INIT = L*1	INIT = H*2	mode	Hi-Z = 0	Hi-Z = 1
33	P17	PPG6/TX0*3					
34	P20	ADTG1/IC2					
35	P21	ADTG2/IC3					
36	P22	PWI0					
37	P23	DTTI			Retention	Retention	0
38	P24	CKI			of the immediately prior state	of the immediately prior state	Output Hi-Z/ Input 0 fixed
39	P25	IC0					input o inxou
40	P26	IC1	Output Hi-Z/	Output Hi-Z/			
41	P27	General port	Input disabled	Input enabled			
42	PG1	PPG0	disabled	Chabled			
49	P37	PPG4					
50	P36	PPG7/INT7			Input enabled	Input enabled	Input enabled
52 to 57	P35 to P30	RTO5 to RTO0			Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
58 to 61	P40 to P43	INT0 to INT3			Input enabled	Input enabled	Input enabled

^{*1 :} $\overline{\text{INIT}} = \text{L}$: Indicates the pin status with $\overline{\text{INIT}}$ remaining at the "L" level.

^{*2 :} $\overline{\text{INIT}} = \text{H}$: Indicates the pin status existing immediately after $\overline{\text{INIT}}$ transition from "L" to "H" level.

^{*3:} C-CAN terminal is loaded in MB91267NA/F267NA.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Ra	ting	Unit	Remarks
Farameter	Syllibol	Min	Max	Oilit	Remarks
Power supply voltage*1	Vcc	Vss - 0.5	Vss + 6.0	V	
Analog power supply voltage*1	AVcc	Vss - 0.5	Vss + 6.0	V	*2
Analog reference voltage*1	AVRHn*6	Vss - 0.5	Vss + 6.0	V	*2
Input voltage*1	Vı	Vss - 0.3	Vcc + 0.3	V	
Analog pin input voltage*1	VIA	Vss - 0.3	AVcc + 0.3	V	
Output voltage*1	Vo	Vss - 0.3	Vcc + 0.3	V	
"L" level maximum output current	lol	_	10	mA	*3
"L" level average output current	lolav	_	8	mA	*4
"L" level total maximum output current	Σ lol	_	60	mA	
"L" level total average output current	Σ lolav	_	30	mA	*5
"H" level maximum output current	Іон	_	- 10	mA	*3
"H" level average output current	І онаv	_	- 4	mΑ	*4
"H" level total maximum output current	Σ loн	_	- 30	mΑ	
"H" level total average output current	Σ lohav	_	- 12	mA	*5
Power consumption	Po	_	600	mW	
Operating temperature	Та	- 40	+ 105	°C	At single chip operating
Storage temperature	Tstg	- 55	+ 125	°C	

^{*1 :} The parameter is based on Vss = AVss = 0 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2 :} Be careful not to exceed $V_{CC} + 0.3 \text{ V}$, for example, when the power is turned on. Be careful not to let AV_{CC} exceed V_{CC} , for example, when the power is turned on.

^{*3:} The maximum output current is the peak value for a single pin.

^{*4 :} The average output current is the average current for a single pin over a period of 100 ms.

^{*5 :} The total average output current is the average current for all pins over a period of 100 ms.

^{*6 :} AVRHn = AVRH1, AVRH2

2. Recommended Operating Conditions

(Vss = AVss = 0 V)

Parameter	Symbol	Value		Unit	Remarks
raiametei	Syllibol	Min	Max	Oilit	Kemarks
Power supply voltage	Vcc	4.0	5.5	V	At normal operating
Analog power supply voltage	AVcc	Vss + 4.0	Vss + 5.5	V	
Analog reference voltage	AVRH1	AVss	AVcc	V	For A/D converter 1
Analog reference voltage	AVRH2	AVss	AVcc	V	For A/D converter 2
Operating temperature	Та	- 40	+ 105	°C	At single chip operating

Note: Upon power up, it takes approx. 100 μ s for stabilization of internal power supply after the Vcc power supply is stabilized. Keep applying "L" to $\overline{\text{INIT}}$ pin signal during that period.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

(Vcc = 4.0 V to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Pin Name	Conditions		Value		Unit	Remarks
Parameter	Symbol	Pili Name	Conditions	Min	Тур	Max	Onit	Remarks
"H" level input voltage	Vihs	Hysteresis input pin	_	Vcc×0.8	_	Vcc + 0.3	V	
"L" level input voltage	VILS	Hysteresis input pin	_	Vss - 0.3	_	Vss×0.2	V	
"H" level output	Vон	Other than P30 to P35	Vcc = 5.0 V, Іон = 4.0 mA	Vcc - 0.5	_	_	V	
voltage	V _{OH2}	P30 to P35	Vcc = 5.0 V, Іон = 8.0 mA	Vcc - 0.7	_	_	V	
"L" level output	Vol	Other than P30 to P35	Vcc = 5.0 V, $IoL = 4.0 mA$	_	_	0.4	V	
voltage	V _{OL2}	P30 to P35	Vcc = 5.0 V, loL = 12 mA	_	_	0.6	V	
Input leak current	lu	_	Vcc = 5.0 V, Vss < Vı < Vcc	- 5	_	+ 5	μΑ	
Pull-up resistance	Rpull	INIT, Pull-up pin	_	_	50	_	kΩ	
	Icc	Vcc	Vcc = 5.0 V, 33 MHz	_	90	100	mA	
Power supply	Iccs	Vcc	Vcc = 5.0 V, 33 MHz	_	60	80	mA	At SLEEP
current	Іссн	Vcc	Vcc = 5.0 V, $Ta = +25 °C$	_	300	_	μΑ	At STOP
Input capacitance	Cin	Other than Vcc, Vss, AVcc, AVss, AVRH1, AVRH2	_	_	5	15	pF	

4. Flash Memory Write/Erase Characteristics

Parameter	Conditions		Value			Remarks	
Faranietei	Conditions	Min	Тур	Max	Unit	Keillaiks	
Sector erase time (4 Kbytes sector)	$Ta = +25 ^{\circ}C,$ $Vcc = 5.0 ^{\circ}V$		0.2	0.5	s	Not including time for internal writing before deletion.	
Byte write time	$Ta = +25 ^{\circ}C,$ $Vcc = 5.0 ^{\circ}V$		32	3600	μs	Not including system-level overhead time.	
Erase/write cycle	_	10000		_	cycle		
Flash memory data retention time	Average Ta = + 85 °C	20	_		year	*	

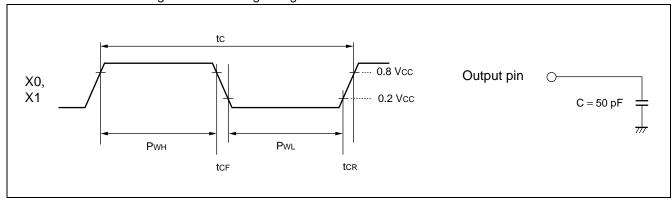
 $^{^{\}star}$: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 $^{\circ}\text{C})$.

5. AC Characteristics

(1) Clock Timing Ratings

(Vcc = 4.0 V to 5.5 V, Vss = AVss = 0 V)

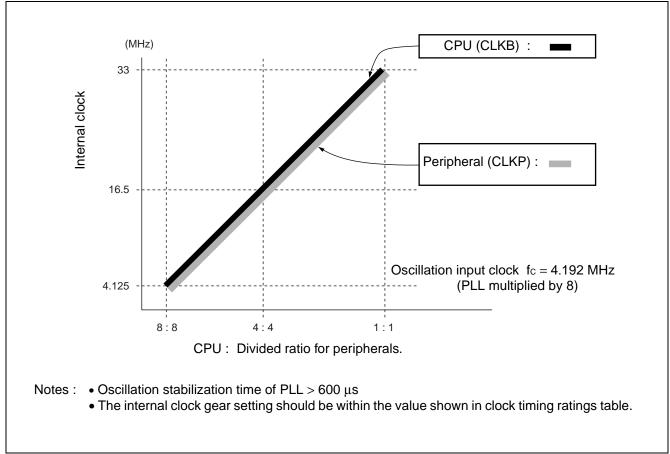
Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
Farameter	Syllibol	Name	Conditions	Min	Тур	Max	Oilit	Kemarks	
Clock frequency	fc	X0 X1		3.6*2	_	12	MHz	For using the PLL within the self-oscilla-	
Clock cycle time	tc	X0 X1	_	83.3		278*2	ns	tion enabled range, set the multiplier for the internal clock not to let the operating fre- quency exceed 33 MHz.	
Input clock pulse width	Pwh PwL	X0	_	100		_	ns	The standard of the duty ratio is 40 % to 60 %.	
Input clock rising, falling time	tcf tcr	X0	_	_		5	ns	At external clock	
Internal operating	f CP		When 4.125 MHz is	2.06*1		33	MHz	CPU	
clock frequency	f CPP	_	input as the X0 clock frequency and	2.06*1		33	MHz	Peripheral	
Internal operating	t cp		×8 multiplication is	30.3		485*1	ns	CPU	
clock cycle time	t CPP	—	set for the PLL of the oscillator circuit.	30.3		485*1	ns	Peripheral	


^{*1 :} The values assume a gear cycle of 1/16.

*2 : When the PLL is used, the lower-limit frequency of the input clock to the X0 and X1 pins determines depending on the PLL multiplication.

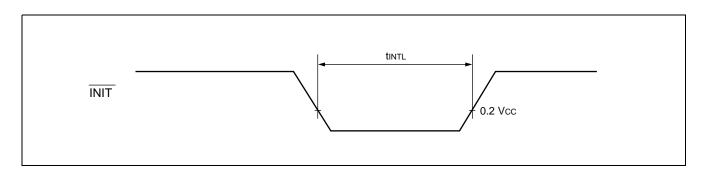
At \times 1 multiplication : more than 8 MHz

At $\times 2$ to $\times 8$ multiplication : more than 4 MHz


• Conditions for measuring the clock timing ratings

• Operation Assurance Range

• Internal clock setting range



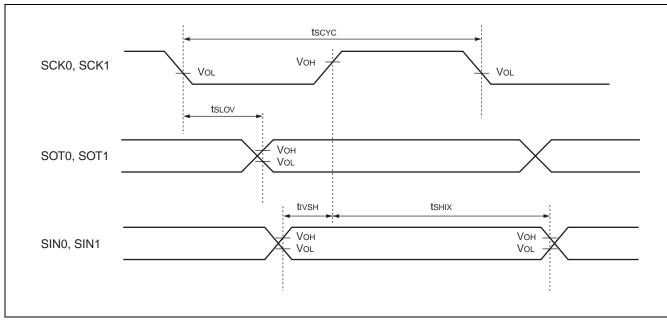
(2) Reset Input Ratings

(Vcc = 4.0 V to 5.5 V, Vss = AVss = 0 V)

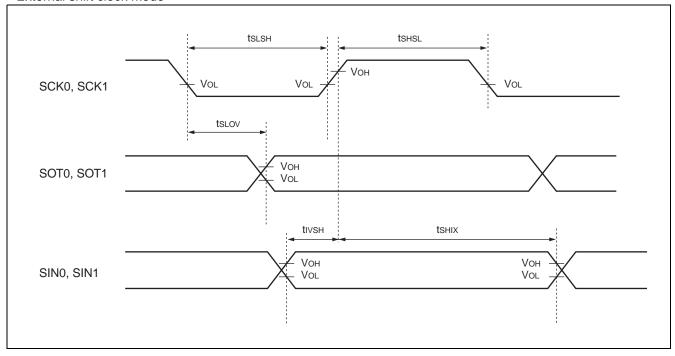
Parameter	Sym-	Pin	Condi-	Value	Unit	Remarks	
raiailletei	bol	Name	tions	Min	Max	Oilit	IXEIIIAI KS
INIT input time (at power-on and STOP mode)	tintl	INIT		Oscillation time of oscillator $+ tc \times 10$	_	ns	*
INIT input time (other than the above)	UNIL	IINII	_	tc × 10	_	ns	

^{*:} After the power is stable, L level is kept inputting to $\overline{\text{INIT}}$ pin for the duration of approximately 100 μ s until the internal power is stabilized.

(3) UART Timing


(Vcc = 4.0 V to 5.5 V, Vss = AVss = 0 V)

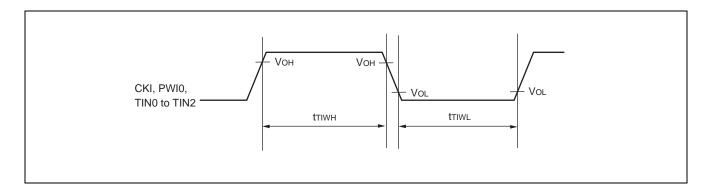
Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit
Faranietei	Syllibol	riii Naiile	Conditions	Min	Max	Ollic
Serial clock cycle time	tscyc	SCK0, SCK1		8 tcycp	_	ns
$SCK \downarrow o SOT delay time$	tslov	SCK0, SCK1, SOT0, SOT1	Internal shift	- 80	+ 80	ns
Valid SIN → SCK ↑	t ıvsh	SCK0, SCK1, SIN0, SIN1	clock mode	100	_	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıх	SCK0, SCK1, SIN0, SIN1		60	_	ns
Serial clock "H" pulse width	t shsl	SCK0, SCK1		4 tcycp	_	ns
Serial clock "L" pulse width	t slsh	SCK0, SCK1		4 tcycp	_	ns
$SCK \downarrow \to SOT$ delay time	tslov	SCK0, SCK1, SOT0, SOT1	External shift	_	150	ns
Valid SIN → SCK ↑	t ıvsh	SCK0, SCK1, SIN0, SIN1	clock mode	60	_	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıх	SCK0, SCK1, SIN0, SIN1		60	_	ns


Notes: • The above ratings are the values for clock synchronous mode.

[•] tcycp indicates the peripheral clock cycle time.

• Internal shift clock mode

• External shift clock mode

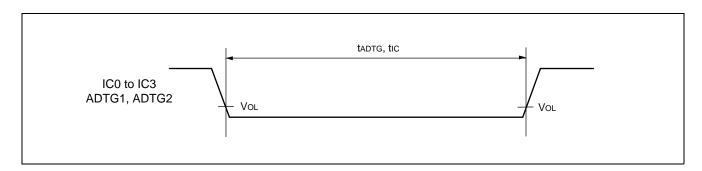


(4) Free-run Timer Clock, PWC Input, and Reload Timer Trigger Timing

(Vcc = 4.0 V to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol Pin Name		Conditions	Va	Unit	
Parameter			Conditions	Min	Max	Oilit
Input pulse width	tтıwн tтıwL	CKI, PWI0, TIN0 to TIN2	_	4 tcycp	_	ns

Note: tcycp indicates the peripheral clock cycle time.



(5) Trigger Input Timing

(Vcc = 4.0 V to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Pin Name	Conditions	Va	Unit	
raiametei	Syllibol	Fili Naille	Conditions	Min	Max	Oilit
Input capture trigger input	tıc	IC0 to IC3	_	5 tcycp	_	ns
A/D Converter activation trigger input	t adtg	ADTG1, ADTG2	_	5 tcycp	_	ns

Note: tcycp indicates the peripheral clock cycle time.

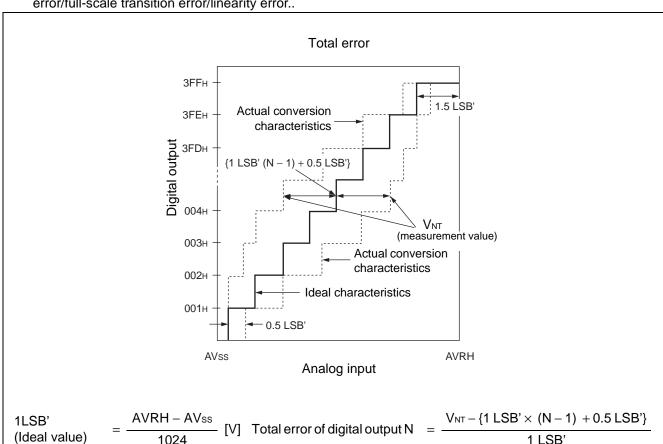
6. Electrical Characteristics for the A/D Converter

(Vcc = AVcc = 5.0 V, Vss = AVss = 0 V)

Parameter	Sym-	Pin Name		Value		Unit	Remarks	
rarameter	bol	Pili Naille	Min	Тур	Max	Onit	Remarks	
Resolution	_		_	_	10	bit		
Total error*1	_	_	- 4	_	+ 4	LSB		
Linearity error*1	_	_	- 3.5		+ 3.5	LSB		
Differential linearity error*1		_	- 3	_	+ 3	LSB	At AVRHn*4 = 5.0 V	
Zero transition voltage*1	Vот	AN0 to AN10	AVss – 3.5LSB	AVss + 0.5LSB	AVss + 4.5LSB	V	7.1.7.1.7.1.1.1.1	
Full transition voltage*1	V _{FST}	AN0 to AN10	AVRH – 5.5LSB	AVRH – 1.5LSB	AVRH + 2.5LSB	V		
Conversion time	_		1.2*2		_	μs		
Analog port Input current	Iain	AN0 to AN10	_	_	10	μА		
Analog input voltage	Vain	AN0 to AN10	AVss	_	AVRH	V		
Reference voltage	_	AVRHn*4	AVss	_	AVcc	V		
Analog power supply	lΑ			2	_	mA	Per 1 unit	
current (analog + digital)	I AH*3	AVcc	_	_	100	μА	Per 1 unit	
Reference power supply current (between AVRH and	lR	AVRHn*4	_	1	_	mA	Per 1 unit AVRHn* 4 = 5.0 V, at AVss = 0 V	
AVss)	I RH*3		_	_	100	μΑ	Per 1 unit at STOP	
Analog input capacitance	_	_	_	10	_	pF		
Inter-channel disparity	_	AN0 to AN10	_	_	4	LSB		

^{*1 :} Measured in the CPU sleep state

Note : The above does not guarantee the inter-unit accuracy. Set the output impedance of the external circuit $\leq 2~k\Omega$.


^{*2 :} Vcc = AVcc = 5.0 V, machine clock at 33 MHz

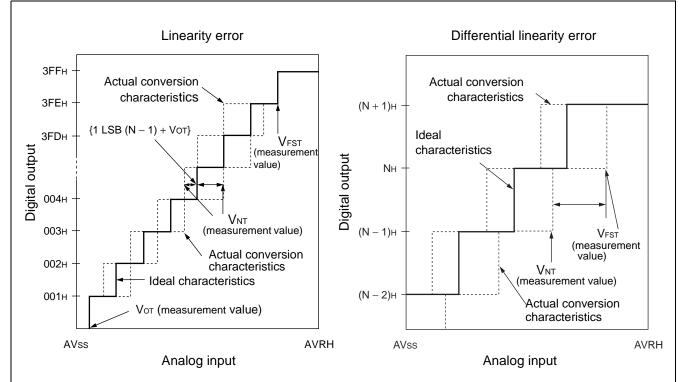
^{*3:} The current when the CPU is in stop mode and the A/D converter is not operating (at Vcc=AVcc=AVRHn=5.0 V)

^{*4:} AVRHn = AVRH1, AVRH2

Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Linearity error : Zero transition point (00 0000 0000 ←→ 00 0000 0001) and full-scale transition point.
 Difference between the line connected (11 1111 1110 ←→ 11 1111 1111) and actual conversion characteristics.
- Differential linearity error: Deviation of input voltage, that is required for changing output code by 1 LSB, from an ideal value.
- Total error: This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error..

N: A/D converter digital output value

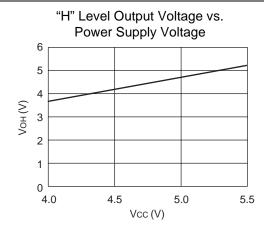

V_{NT}: A voltage at which digital output transits from (N + 1)_H to N_H.

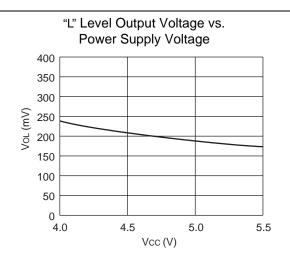
Vot' (Ideal value) = AVss + 0.5LSB' [V]

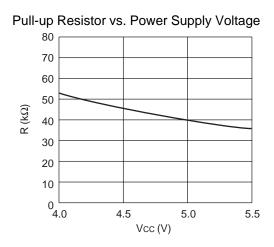
V_{FST}' (Ideal value) = AVRH - 1.5 LSB' [V]

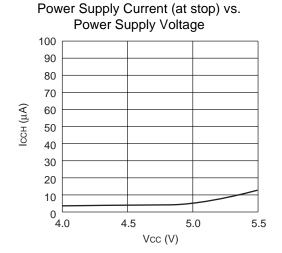
(Continued)

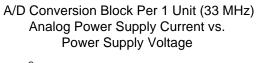
$$\label{eq:linearity} \text{Linearity error in digital output N} \ = \frac{\text{V}_{\text{NT}} - \{ \text{ 1 LSB} \times \text{ (N-1)} + \text{V}_{\text{OT}} \}}{\text{1 LSB}} \text{ [LSB]}$$

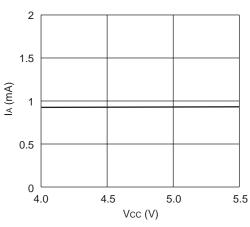

Differential linearity error in digital output N =
$$\frac{V (N+1) T - V_{NT}}{1 LSB}$$
 - 1 [LSB]

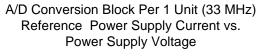

$$1 LSB = \frac{V_{FST} - V_{OT}}{1022} [V]$$

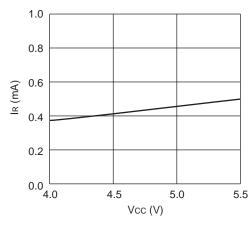

N : A/D converter digital output value

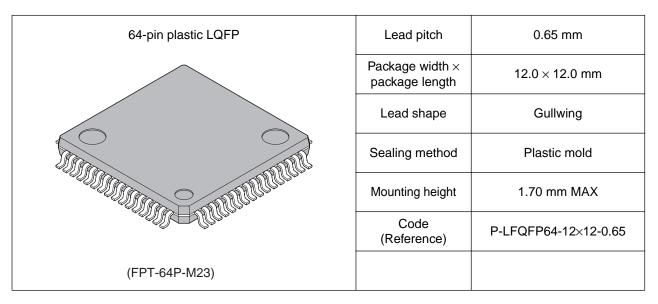

 V_{OT} : A voltage at which digital output transits from 000H to 001H . V_{FST} : A voltage at which digital output transits from 3FEH to 3FFH .

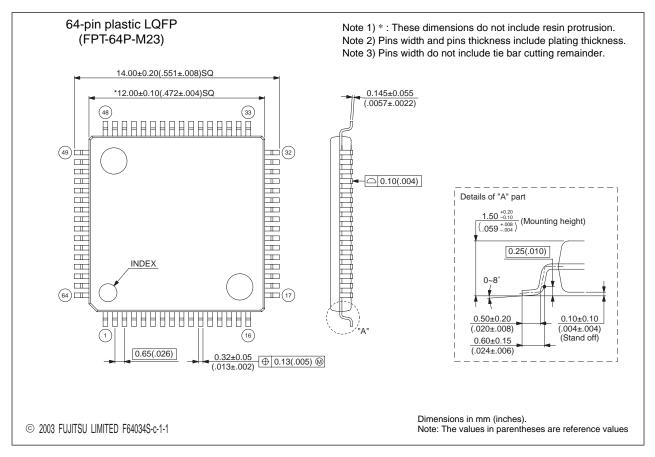

■ EXAMPLE CHARACTERISTICS







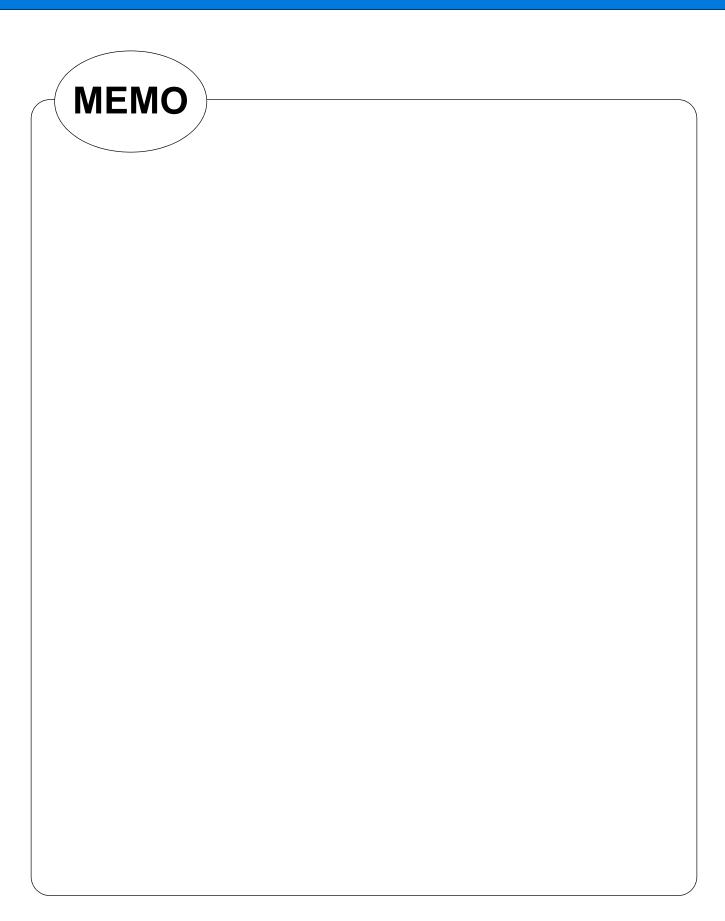


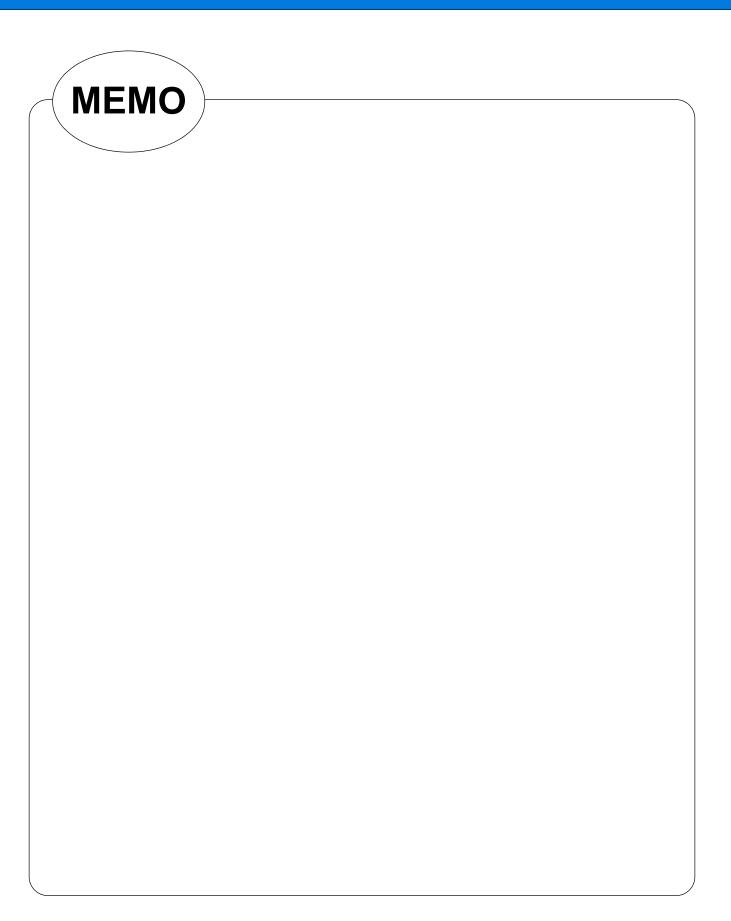


■ ORDERING INFORMATION

Part number	Package	Remarks
MB91267APMC		
MB91267NAPMC	64-pin plastic LQFP	Package loaded C-CAN
MB91F267APMC	(FPT-64P-M23)	
MB91F267NAPMC		Package loaded C-CAN
MB91V265ACR-ES	401-pin ceramic PGA	
	(PGA-401C-A02)	

■ PACKAGE DIMENSION





Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
_		Deleted the MB91266A (MASK ROM Product) Added the MB91267A and MB91267NA (MASK ROM Product)

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD.

151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741

Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road Tsimshatsui, Kowloon Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.